SUPPLEMENTAL SITE INVESTIGATION COLFAX CHARTER ELEMENTARY SCHOOL PERIMETER UPGRADE PROJECT 11724 ADDISON STREET VALLEY VILLAGE, CALIFORNIA 91607

Prepared For:

LOS ANGELES UNIFIED SCHOOL DISTRICT

Office of Environmental Health and Safety 333 South Beaudry Avenue, 21st Floor Los Angeles, California 90017

Project No. 11640.008

January 17, 2019

January 17, 2019

Project No. 11640.008

Los Angeles Unified School District Office of Environmental Health and Safety 333 South Beaudry Avenue, 21st Floor Los Angeles, California 90017

Attention: Mr. Andrew Modugno

Subject: Supplemental Site Investigation

Colfax Charter Elementary School Perimeter Upgrade Project,

11724 Addison Street, Valley Village, California 91607

Leighton Consulting, Inc. is pleased to present this Supplemental Site Investigation Report for the subject site which documents historical site land use, outlines the approach and data collected as part of the recently concluded site assessment, and recommends further action be taken to address impacted soil at the property.

If you have any questions regarding this report, please do not hesitate to contact the undersigned at your earliest convenience. We appreciate the opportunity to be of service to the District.

Respectfully submitted,

LEIGHTON CONSULTING, INC.

Ross Surrency, PG Associate Geologist

RES/RAL/Ir

ROSS E.
SURRENCY
No. 8005

Distribution: Addressee (3 hardcopies) c/o Andrew Modugno

Robert Lovdahl, PG Senior Project Geologist

> 17781 Cowan Irvine, CA 92614-6009 949.250.1421 949.250.1114 Fax

TABLE OF CONTENTS

<u>Section</u>					
LIST	OF AE	BBREVIATIONS/ACRONYMS	III		
EXE	CUTIV	E SUMMARY	1		
1.0	INTR	RODUCTION	1		
	1.1 1.2 1.3 1.4	Site Description Background Regional Geology and Hydrogeology Environmental Setting	1 2		
		1.4.1 School Property			
	1.5	Discussion of Phase I ESA and Previous PEA Equivalent Items	4		
2.0	SAMPLING ACTIVITIES				
	2.1 2.2 2.3 2.4	Objectives Utility Clearance Health & Safety Plan Field Procedures	7 7 7		
		2.4.1 Sample Collection and Analysis2.4.2 Sample Handling and Storage2.4.3 Sample Custody2.4.4 Equipment Decontamination	9		
	2.5 2.6 2.7	Laboratory Quality ControlAbandonment of Soil Borings	10		
3.0	RESULTS				
	3.1 3.2 3.3 3.4 3.5 3.6	Arsenic Results Lead Results Mercury Results TPH Results OCP Results PCB Results	13 13 14		
4.0	HUM	IAN HEALTH SCREENING EVALUATION	16		
5.0	COMMUNITY PROFILE				
	5.1 5.2	Community DemographicsLocal Participation and Involvement	19 19		
6.0	OPIN	NION OF ENVIRONMENTAL PROFESSIONAL	21		

7.0	CONCLUSIONS AND RECOMMENDATIONS23
8.0	LIMITATIONS27
List of	Accompanying Figures, Tables and Appendices
Figure	1 – Site Location Map
Figure	2 – Site Plan
Figure	3 - Analytical Results for Arsenic, DRO, and ORO in Soil
Figure	4 – Recommended Excavation Area for OCP-Impacted Soil
Figure	5 – Recommended Excavation Areas for Arsenic-Impacted Soil
Figure	6 - Recommended Excavation Area for DRO-Impacted Soil
Table	1 – Summary of Metal and Total Petroleum Hydrocarbon Results in Soil
Table	2 – Summary of Organochlorine Pesticide Results in Soil
Table	3 – Summary of Polychlorinated Biphenyl Results in Soil
Appen	dix A – References
Appen	dix B – Boring Logs
Appen	dix C – Photographic Log
Appen	dix D – Laboratory Analytical Reports
Appen	dix E – Waste Disposal Documentation
Appen	dix F – ProUCL Output Spreadsheet

LIST OF ABBREVIATIONS/ACRONYMS

ACM asbestos containing material

amsl above mean sea level

AQMD South Coast Air Quality Management District

bgs below ground surface

Cal/EPA California Environmental Protection Agency
CDPH California Department of Public Health

COC chemical of concern

COPC chemical of potential concern

District Los Angeles Unified School District

DOT Department of Transportation

DRO diesel range organics

DTSC Department of Toxic Substances Control

DTSC SL DTSL-Modified Screening Level ESA Environmental Site Assessment

ESL SFRWQCB Environmental Screening Level

GRO gasoline range organics

HASP Site-specific health and safety plan

IDW investigation derived waste

LAUSD Los Angeles Unified School District

LBP lead-based paint

Leighton Consulting Inc.

mg/kg milligram per kilogram

µg/kg microgram per kilogram

MDL method detection limit

OCPs organochlorine pesticides

OEHS Office of Environmental Health and Safety

ORO oil range organics

PCBs Polychlorinated Biphenyls

PEA Preliminary Endangerment Assessment

PPE personal protective equipment

RCRA Resource Conservation and Recovery Act

REC recognized environmental condition

RSL US EPA Regional Screening Level (residential)

School property Colfax Charter Elementary School Campus

SFRWQCB San Francisco Bay Regional Water Quality Control Board

Site Colfax Charter Elementary School Perimeter Upgrade Project Area

SSI Supplemental Site Investigation

STLC soluble threshold limit concentration

Strongarm Environmental Services, Inc.

TPH Total petroleum hydrocarbons
TTCL total threshold limit concentration

UCL upper confidence limit

USA Underground Service Alert

EXECUTIVE SUMMARY

This Supplemental Site Investigation (SSI) Report summarizes historical site land use and outlines the approach utilized and data collected as part of the recently concluded assessment conducted for the Colfax Charter Elementary School Perimeter Upgrade Project (the 'Site', Figures 1 and 2). The Site consists of the perimeter area of the Colfax Charter Elementary School property (hereinafter also referred to as 'the School property'), which is located at 11724 Addison Street, Valley Village, California 91607.

The School property was formerly used as an arboretum from at least 1928 to 1940 and included a single-family dwelling in the center of the property. LAUSD purchased the property in 1949 and has operated a school at the property since approximately 1951. Prior to 1928, the land was undeveloped. The majority of the School property is paved and currently developed with 15 various school buildings, approximately six (6) intermodal containers used for storage, playground areas and an animal sanctuary. The area surrounding the School property is mainly residential.

The primary objectives of this SSI were to assess shallow soil for potential environmental concerns and to evaluate overall Site health risk based on soil analytical screening results for chemicals of potential concern (COPCs), including lead, arsenic, mercury, total petroleum hydrocarbons (TPH), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs).

Between October 27 and December 21, 2018, forty (40) soil borings were advanced to a maximum depth of three (3) feet below ground surface (bgs) using a hand auger. Boring locations are shown on Figure 2. Soil samples were collected from depth intervals 0.5, 1.5 and 3 feet bgs and select samples were analyzed for COPCs. The soil matrix analytical results (Table 1) indicate that COPCs at the Site were either below laboratory detection limits or below regulatory screening levels with the exception of arsenic, diesel-range organics (DRO), chlordane, and dieldrin.

Based on the SSI sampling results (Tables 1 through 3), elevated levels of arsenic, DRO, chlordane, and dieldrin were reported for soil in limited areas at the Site (Figures 3 and 4) and further action appears warranted. A removal action (soil excavation) is recommended to target the four areas (adjacent to Borings PER1, PER12, PER14, and PER22) where impacted soils were identified above regulatory screening levels (Figures 4, 5, and 6). The details regarding the recommended soil excavation and confirmation sampling activities are presented in Section 7.0. Soil generated from the proposed remedial excavation areas should be appropriately secured from public access,

sampled in accordance with District waste characterization procedures, and profiled for offsite disposal at an approved landfill.

1.0 INTRODUCTION

This Supplemental Site Investigation (SSI) Report (hereinafter also referred to as 'the report') summarizes historical site land use and outlines the approach utilized and data collected as part of the recently concluded assessment conducted at the Colfax Charter Elementary Perimeter Upgrade Project (the 'Site', Figures 1, and 2).

This report was prepared by Leighton Consulting Inc. (Leighton) on behalf of the Los Angeles Unified School District (LAUSD or the 'District') in general conformance with various existing guidance documents related to site assessment, characterization and investigation published by the California Environmental Protection Agency (Cal/EPA) – Department of Toxic Substances Control (DTSC, 2015). Pertinent references related to the Site are listed in Appendix A.

1.1 <u>Site Description</u>

The Site is part of the Colfax Charter Elementary School property (hereinafter also referred to as 'the School property'), which is located at 11724 Addison Street, Valley Village, California 91607. The School property is identified by the Los Angeles County Assessor's Office with Assessor's ID Number (AIN) 2355-013-900 and occupies 8.1 acres. The property is owned and operated by LAUSD.

The Site consists of the perimeter area around the School property boundary and represents proposed development areas associated with the Colfax Charter Elementary School Perimeter Upgrade Project. A portion of the Site along the eastern property boundary was previously investigated in 2016 during a separate Preliminary Endangerment Assessment (PEA) that was completed to assess environmental conditions in two areas at the School property as part of the Colfax Charter Elementary School Classroom Addition Project (areas previously investigated are outlined in yellow on Figure 2).

1.2 Background

The School property was formerly used as an arboretum from at least 1928 to 1940 and included a single-family dwelling in the center of the property. LAUSD purchased the property in 1949 and has operated a school at the property since approximately 1951. Prior to 1928 the land was undeveloped. The majority of the School property is paved and currently developed with 15 various school

buildings, approximately six (6) intermodal containers used for storage, playground areas and an animal sanctuary. The area surrounding the School property is mainly residential.

WorleyParsons completed a Phase I Environmental Site Assessment (ESA) for the School property in January 2016. Findings from the Phase I ESA are discussed in Section 1.5, below. In 2016, Leighton prepared a PEA Equivalent Document for two areas on the campus as part of the Colfax Charter Elementary School Classroom Addition Project.

The current Site contact related to the environmental matters is listed below:

Mr. Andrew Modugno
Los Angeles Unified School District
Office of Environmental Health and Safety
333 South Beaudry Avenue, 21st Floor
Los Angeles, California 90017

1.3 Regional Geology and Hydrogeology

The School property is located at an approximate elevation of 633 feet above mean sea level (amsl), and the local topography generally slopes toward the southeast (WorleyParsons, 2016). The School property is located geographically in the southeastern portion of the San Fernando Valley area approximately 1.5 miles north of the Santa Monica Mountains. This area falls within the Transverse Ranges Geomorphic Province of Southern California (DWR, 1961). The Site is underlain by interbedded layers of Quaternary, unconsolidated and poorly sorted sand, silty sand and silty clay from the surface to 71 feet below ground surface (bgs; WorleyParsons, 2016).

The School property is located within the San Fernando Valley Groundwater Basin. The nearest groundwater well, Observation Well 3831J, is located approximately 840 feet north of the School property. Groundwater in this well was measured at approximately 133.70 feet bgs on December 3, 2009 (WorleyParsons, 2016). Site-specific groundwater data was not available for review.

1.4 Environmental Setting

A Phase I ESA was completed for the School property on January 21, 2016 by WorleyParsons (WorleyParsons, 2016). The purpose of the Phase I ESA was to identify recognized environmental conditions (RECs) in order to assist in the evaluation of historical land use, assess potential environmental impacts on- and off-site, and determine if any potential environmental impacts may pose a threat to on-site occupants, off-site individuals and the environment. No other environmental investigations for the School property were identified during the Phase I ESA. Information pertaining to the School property as determined by the Phase I ESA is summarized below.

1.4.1 School Property

The Phase I ESA includes a review of historical aerial photographs, topographic maps and Sanborn® maps for the School property. According to the Phase I ESA, historical use of the School property from at least 1928 to 1940 included an arboretum with a single-family dwelling located in the center portion of the property. The property was purchased by LAUSD in 1949, and has operated as a school since approximately 1951. Currently, the majority of the School property is paved and is developed with various school buildings, intermodal containers used for storage, playground areas and an animal sanctuary. The findings of the Phase I ESA are discussed in Section 1.5, below.

1.4.2 Site

The Site generally consists of landscaped areas or planter spaces on the north, west, east, and south margins of the School property. The east margin of the School property includes a paved section associated with a parking lot.

The District plans to redevelop the School property perimeter as part of the Colfax Charter Elementary School Perimeter Upgrade Project. Planned upgrades included irrigation modifications, possible tree removal, and other changes to landscaping. Leighton was contracted by the District to complete a SSI to characterize soil in advance of these planned perimeter upgrades.

1.5 <u>Discussion of Phase I ESA and Previous PEA Equivalent Items</u>

The Phase I ESA found no evidence of the storage or release of hazardous materials during the on-site inspection at the School property with the exception of the storage of small quantities of gasoline, cleaning chemicals and oil storage as janitorial supplies. During review of regulatory databases, Colfax Charter Elementary School was identified in the Phase I ESA as a large quantity waste generator, as a result of past school renovation activities, which included the abatement of asbestos, lead-based paint (LBP) and polychlorinated biphenyl (PCB) containing equipment. Based on the site reconnaissance and records reviewed as part of the Phase I ESA, the following RECs were identified:

- Potential presence of LBP residue in shallow soils around the drip lines of the existing and former buildings at the Site.
- Potential presence of organochlorine pesticides (OCPs) in shallow soils around the foundation of the existing and former buildings at the Site and in areas of former horticulture/agriculture at the School property.
- Potential presence of arsenic in shallow soils under pavement at the School property from possible historic use of arsenical herbicides.
- Potential presence of asbestos containing material (ACM) in building materials at the School property.

A hazardous material survey was recommended in the Phase I ESA to address concerns regarding hazardous materials in construction materials (ACM, LBP, and universal wastes). The hazardous material survey is not part of Leighton's scope for this SSI.

DTSC guidance indicates that LBP residue from paint or surface coatings may be present in soil around school structures that are adjacent or near unpaved areas where runoff could occur and were constructed prior to January 1993 (DTSC, 2006). OCPs were commonly used as insecticides for termite control, around structures between 1948 and 1989 (DTSC, 2006). PCBs were used widely in caulking and elastic sealant materials, particularly from 1950 through the 1970s until the manufacturing of PCBs was banned in 1979. DTSC guidance indicates that PCBs may exist in soil near exterior caulking present in buildings meeting the age criteria and adjacent to unpaved areas (DTSC, 2006). PCBs in shallow

soil are commonly evaluated at the Phase I ESA Addendum/PEA Equivalent stage of assessment at school sites that meet the age criteria.

Leighton was contracted by the District in 2016 to complete a PEA Equivalent study to address soil concerns identified in the Phase I ESA, specifically to collect shallow soil samples within two areas referred to as the east and west development areas (delineated in yellow on Figure 2). The goal of the study was to assess potential environmental concerns associated with shallow soil that may be encountered during the Colfax Charter Elementary School Classroom Addition Project. Between March 21 and 22, 2016, sixty-one (61) soil borings were advanced to a maximum depth of 2.5 feet bgs using a hand auger. Soil samples were collected from 0.5, 1.5 and 2.5 feet bgs and select samples were analyzed for COPCs including lead, arsenic, OCPs, and PCBs. From these samples, all of the 0.5 and 1.5 feet bgs samples were analyzed along with 4 of the 2.5 feet bgs samples for lead, arsenic, and/or OCPs. Approximately 10% of the 0.5 feet samples (8 of the 61 samples) were analyzed to screen shallow soil for PCBs.

Based on the results of shallow soil sampling, lead, arsenic, OCPs, and PCBs were either below laboratory detection limits or below regulatory screening levels. The 2016 PEA Equivalent Report concluded that no further action was warranted for arsenic, lead, OCPs and PCBs in shallow soil within the proposed development areas (Leighton Consulting, 2016).

2.0 SAMPLING ACTIVITIES

The SSI field sampling activities presented herein were conducted on October 20, October 27, November 3, and December 21, 2018, and were designed to assess lead, arsenic, mercury, OCPs, total petroleum hydrocarbons (TPH), and PCBs which were the chemicals of potential concern (COPCs) identified for shallow soil at the Site. Initially, 29 sampling locations were completed on October 27, 2018, with an additional 11 sampling locations completed on November 3, 2018 and December 21, 2018, to delineate the extent of elevated chemical concentrations identified within four (4) sampling locations which were equivalent to or exceeded regulatory screening criteria.

Where lateral delineation sampling was warranted, step-out soil sampling locations were advanced approximately five (5) feet from the original sampling location in a "V" pattern. Step-out sample locations were identified in the sample identification (ID) using the cardinal direction traveled from the original sample location (e.g., a step-out sampling location was completed five (5) feet to the northeast of location PER12 and therefore named PER12NE [Figures 2 and 3]). A second round of step-out sampling was completed on December 21, 2018 near boring location PER1. Step-out samples completed on December 21, 2018 were collected at distances ranging from approximately 17 to 35 feet away from the initial boring location in order to assess the lateral extent of OCP-impacted soil in this area (includes soil borings PER1-S, PER1-SE2, and PER1-SW2). Field observations of the soil samples did not provide an indication of hydrocarbon staining and/or odors. Appendix B contains soil boring logs and boring locations are shown on Figure 2. Appendix C contains a photographic log showing representative soil boring locations from the sampling events.

The sampling consisted of the collection of select at-depth soil samples to screen shallow soil for lead, arsenic, mercury, OCPs, TPH, and PCB concentrations. Sampling activities consisted of the following components discussed below.

2.1 Objectives

The primary objectives of this SSI were:

- To assess shallow soil for potential environmental concerns identified in the Phase I ESA for the Site; and
- To evaluate the overall Site health risk based on soil analytical screening results.

2.2 <u>Utility Clearance</u>

Prior to collecting the soil samples, Underground Service Alert (USA) was notified more than 48-hours prior to initiation of field sampling activities for marking subsurface utilities in and around the Site. The Site boundary was clearly marked with white water-based chalk spray paint on October 12, 2018, prior to USA notification.

In addition to USA notification, Spectrum Geophysics completed a geophysical survey on October 20 and 27, 2018, to identify potential underground utilities or obstructions in conflict with the proposed soil boring locations. Based on the geophysical survey, select proposed boring locations were adjusted in the field where necessary to minimize risk to damaging underground utilities.

2.3 Health & Safety Plan

A Site-specific health and safety plan (HASP) was prepared for the field activities. The HASP addressed issues regarding chemical exposure, personal protective equipment (PPE), physical and biological hazards that might be expected at the Site, an emergency response plan, and route to the nearest hospital. Site personnel engaged in field activities were required to read and sign the HASP. Subcontractor(s) were required to prepare and follow their own HASP during field activities, considering the Site-specific conditions.

2.4 Field Procedures

Collection of environmental samples of high integrity is important to the quality of chemical data to be generated. To this end, strict field procedures have been developed. General descriptions of field methods that were employed at various locations during various phases of the field investigation are described below.

2.4.1 Sample Collection and Analysis

Soil borings were advanced by Strongarm Environmental Services, Inc. (Strongarm), a State of California licensed driller, using hand-auger tools. Each boring was advanced to a maximum total depth of three (3) feet bgs. Soil samples were generally collected from the borings at 0.5, 1.5 and 3 feet bgs, where feasible. Lithologic information and soil descriptions from the soil borings were recorded by Leighton's on-site staff and reviewed by

a California Professional Geologist. Boring Logs are provided in Appendix B.

Specific sampling approaches are outlined below:

- Discrete soil samples were obtained from 0.5 feet, 1.5 feet and 3 feet bgs depths from each boring. Soil samples were collected in laboratory-supplied, 8-ounce glass jars.
- The upper 0.5 feet samples were analyzed for lead, arsenic, mercury, OCPs, and TPH as shown in Tables 1 and 2. Approximately 20% of the samples collected from the 0.5 feet bgs interval (8 samples) were analyzed for PCBs. Select 1.5 and 3.0 feet bgs samples were analyzed for arsenic, TPH, and/or OCPs and a majority of the 1.5 and 3.0 feet bgs samples were placed on hold. The 1.5 and 3.0 feet bgs samples were intended to allow analysis in a tiered fashion for vertical delineation of soil contamination, such that the deeper 1.5 and 3.0 feet bgs samples would be analyzed if shallow sample results revealed significant concentrations of metals, TPH, OCPs, or PCBs. A detailed summary of the sample analytical results is included in Tables 1, 2, and 3.
- Field duplicate samples were collected during the SSI sampling activities at an approximate ratio of 1 duplicate sample for every 10 original samples. The duplicate sample was collected immediately after the original sample. Due to the heterogeneity of the soil matrix, the results for duplicate samples may vary from the results of the original sample. The duplicate samples were analyzed for the same parameters as the original samples collected from the same boring and similar interval.
- Equipment rinsate blanks, EB-1 and EB-2, were collected from the reusable sampling equipment (hand auger) during sampling events on October 27, 2018 and November 3, 2018. The equipment blanks were collected by pouring laboratory-supplied deionized water over the cleaned and rinsed hand auger bucket and collecting the poured water in laboratory supplied sample container(s). The equipment blank samples were analyzed for the same parameters as the soil matrix sample(s) collected during the investigation.

Samples were analyzed for the following compounds:

- Lead by EPA Method 6010B;
- Arsenic by EPA Method 6020;
- Mercury by EPA Method 7471A;
- OCPs by EPA Method 8081A;
- PCBs by EPA Method 8082; and
- TPH carbon chain by EPA Method 8015.

2.4.2 Sample Handling and Storage

In the field, each sample container was marked with a unique sample identification along with the date and time of sample collection. Each of the sample containers were wiped with clean paper towels, sealed in a plastic bag, and securely packed in a cooler on ice, in preparation for delivery to the laboratory.

2.4.3 Sample Custody

An entry was made on a chain-of-custody form supplied by the laboratory for each sample that was submitted to the laboratory for analysis. The information recorded included the sampling date and time, sample identification number, matrix type, requested analyses and methods, preservatives, and the sampler's name. Sampling team members maintained custody of the samples until they were relinquished to laboratory personnel or professional courier service. The chain-of-custody form accompanied the samples from the time of collection until received by the laboratory. Each party in possession of the samples signed the chain-of-custody form signifying receipt.

Collected soil samples were transported using standard chain-of-custody protocol to Advanced Technology Laboratories of Signal Hill, California, an analytical testing laboratory accredited by the California Department of Public Health (CDPH). Upon receipt, the laboratory inspected the condition of the sample containers and reported the information on the chain-of-custody or similar form.

A copy of the original completed chain-of-custody form was provided by the laboratory along with the report of results. Appendix D contains copies of the laboratory analytical reports.

2.4.4 Equipment Decontamination

Sampling equipment that came into contact with potentially contaminated soil was decontaminated consistently to assure the quality of samples collected. Decontamination occurred prior to and after each use of a reusable piece of equipment. The sampling devices used (e.g., hand auger) were decontaminated using the following procedures:

- Non-phosphate detergent and tap water scrub, using a brush if necessary;
- Tap water rinse; and
- Final deionized/distilled water rinse.

2.5 <u>Laboratory Quality Control</u>

The laboratory data package provided includes quality control sample results for blanks, matrix spike/matrix spike duplicates, surrogate recoveries, and laboratory control samples/laboratory control sample duplicates, as specified by the method. The laboratory also provided narrative stating whether or not quality control guidelines were met and listed discrepancies and laboratory data qualifiers. The laboratory reports containing the quality control results are included in Appendix D.

2.6 Abandonment of Soil Borings

Upon completion of sampling, all soil borings were backfilled with native soil (soil cuttings) and tamped per the request of District personnel.

2.7 Investigation Derived Waste Management

In the process of collecting environmental samples during the SSI activities, different types of potentially contaminated Investigation Derived Waste (IDW) were generated that included used PPE, and decontamination fluids.

Listed below are the procedures that were followed for handling the IDW:

- Used PPE were double bagged and placed in a municipal refuse dumpster.
 These wastes are not considered hazardous and could be sent to a municipal landfill.
- Decontamination wastewater utilized during the investigation was placed in a U.S. Department of Transportation (DOT)-approved 55-gallon steel drum. The drum was labeled and sealed, pending receipt of analytical results, waste profiling and off-site disposal.

One water sample was collected directly from the 55-gallon drum containing decontamination wastewater after the completion of the soil borings on November 3, 2018 (Sample ID" DRUM COMPOSITE", Appendix D). The IDW sample was analyzed for the following compounds:

- California Code of Regulations (CCR) Title 22 Code of Administrative Manual (CAM) 17 metals (CAM 17 metals) by EPA Method 6010B/7471A;
- Volatile Organic Compounds (VOCs) and Gasoline Range Organics (GRO) by EPA Method 8260B;
- OCPs by EPA Method 8081A; and
- Diesel Range Organics (DRO) and Oil Range Organics (ORO) by EPA Method 8015B.

Additionally, two discrete soil samples from the SSI field activities (PER15-0.5 and PER24-0.5) were analyzed for lead using the Waste Extraction Test for Soluble Threshold Limit Concentration (STLC) by EPA Method 6010B, because the Total Threshold Limit Concentration (TTLC) lead result in this sample was greater than 50 mg/kg. The result for PER24.05 was above the STLC regulatory limit of 5 milligrams per liter (mg/L), and therefore the material is considered hazardous under California waste disposal regulations, per the California Code of Regulations, Title 22, Chapter 11, Article 3.

The IDW sample results indicate that the decontamination water is classified as nonhazardous waste. The single drum of nonhazardous waste was removed from the Site on November 28, 2018 by Belshire Environmental Services, Inc. and transported to DeMenno/Kerdoon in Compton, California for disposal. Appendix E provides waste disposal documentation.

3.0 RESULTS

Information collected from the hand-auger soil borings (Appendix B) indicated that the upper approximately 2 to 3 inches from each boring was characterized as top soil which often exhibited varying amounts of organic material (grass, rootlets, wood chips, leaves, etc.). Between 4 inches and 3.0 feet bgs, Leighton typically observed poorly graded sand and some silty sand at depth. In general, the soil was observed to be grayish brown in color and moist with no chemical odor or visible hydrocarbon staining. Groundwater was not encountered in any of the boreholes during the sampling activities.

During the SSI, soil samples were collected from three depth intervals (0.5, 1.5 and 3.0 feet bgs) from the initial 29 distinct soil borings completed on October 27, 2018. From these samples, all of the 0.5 feet bgs samples were analyzed for lead, arsenic, mercury, and OCPs. Approximately 20% of the 0.5 feet samples (8 of the 40 soil samples) were analyzed to screen shallow soil for PCBs. With the exception of 14 sample locations, deeper soil samples, collected at 1.5 and 3.0 feet bgs, were not analyzed based on the laboratory results from the shallower samples, which were below screening levels and did not require vertical delineation. Additional step-out and step-down sample analysis was completed to laterally and vertically assess elevated concentrations of arsenic, OCPs, and TPH that were greater than or equal to regulatory screening criteria. Results of the delineation efforts are detailed in the sections below.

Duplicate samples show varying results to the original samples likely resulting from the observed heterogeneity of the soil matrix. When comparing analytical results of primary and associated duplicate samples, the maximum concentration was utilized in the human health screening evaluation and presented on Figure 3. The equipment blank sample results indicated that arsenic, lead, mercury, TPH, OCPs, and PCBs were not detected above laboratory detection limits (see laboratory analytical results for Samples EB-1 and EB-2 in Appendix D).

Field procedures (sampling and decontamination) were conducted in compliance with the above procedures. Laboratory procedures were in compliance with the method requirements, including acceptable reporting limits, laboratory selection, and laboratory reporting of quality control information. Acceptable sensitivity was achieved by selecting analytical methods with reporting limits suitable for comparison with action levels. Overall, the dataset is considered to be of acceptable quality. As such, the data set is considered acceptable for use in assessing human health risk at the Site.

Soil analytical results are presented in Tables 1 through 3 and Figure 3 and briefly discussed below.

3.1 Arsenic Results

Arsenic was detected in 42 soil samples with concentrations ranging from an estimated 0.98 milligrams per kilogram (mg/kg) (PER14SE at 1.5 feet bgs) to 13 mg/kg (PER14 at 1.5 feet bgs [Table 1]). The arsenic concentrations detected during this investigation were below the DTSC-adopted background arsenic concentration of 12 mg/kg (DTSC, 2008) in all soil samples with the exception of three (3) samples. Duplicate sample DUP-2 (collected at PER12 at 0.5 feet bgs) and PER14-0.5 reported arsenic concentrations of 12 mg/kg and PER14-1.5 reported a concentration of 13 mg/kg. Step-out and step-down soil samples were collected to laterally and vertically assess the elevated concentrations of arsenic detected at sample locations PER12 and PER14 (Figure 5).

3.2 Lead Results

Lead was detected in 32 soil samples with concentrations ranging from an estimated 0.63 mg/kg (duplicate sample DUP-1 for PER1 at 0.5 feet bgs) to 67 mg/kg (PER15 at 0.5 feet bgs [Table 1]). The lead concentrations detected during this investigation are below the EPA Region 9 Regional Screening Level (RSL) of 400 mg/kg for residential land use (EPA, 2018) and below the DTSC-modified screening level (DTSC SL) of 80 mg/kg (screening level for use in human health risk assessments [DTSC, 2018]).

Lead concentrations exceeding 50 mg/kg were analyzed for the California Waste Extraction Test for STLC as part of a waste-disposal criteria determination effort. Soil samples PER15-0.5 and PER24-0.5 reported soluble lead concentrations of 3.7 and 8.3 mg/L, respectively (Table 1). The soluble lead concentration for PER24-0.5 exceeds the STLC of 5 mg/L, and therefore the material is considered California-restricted non-RCRA hazardous waste under California waste disposal regulations, per the California Code of Regulations, Title 22, Chapter 11, Article 3.

3.3 Mercury Results

Mercury was detected in 32 soil samples with concentrations ranging from an estimated 0.02 mg/kg (PER17 at 0.5 feet bgs) to an estimated 0.10 mg/kg

(PER12 at 0.5 feet bgs). The mercury concentrations detected during this investigation are below the RSL of 11 mg/kg for residential land use and below the DTSC SL of 1.0 mg/kg (Table 1).

3.4 TPH Results

TPH analytical results were divided into three carbon-chain ranges including GRO (C5-C12), DRO (C10-C28), and ORO (C18-C36). GRO was not detected above the laboratory method detection limit (MDL) in the 32 soil samples analyzed. DRO was detected in 37 soil samples with concentrations ranging from 1.2 mg/kg (PER28 at 0.5 feet bgs) to 500 mg/kg (duplicate DUP-3 for sample location PER22 at 0.5 feet bgs). ORO was detected in 37 soil samples with concentrations ranging from 1.6 mg/kg (duplicate DUP-1 for sample location PER1 at 0.5 feet bgs) to 830 mg/kg (duplicate DUP-3 for sample location PER22 at 0.5 feet bgs).

TPH concentrations detected during this investigation were below the San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels (ESLs) (SFRWQCB, 2016) with the exception of the DRO concentration of 500 mg/kg in DUP-3 (sample location PER22 at 0.5 feet bgs [Table 1]).

3.5 OCP Results

Concentrations of 13 individual OCP compounds were detected in soil collected during this investigation (Table 2). Detected compounds included 4,4-DDD, 4,4-DDE, 4,4-DDT, aldrin, alpha-BHC, alpha-chlordane, beta-BHC, chlordane, delta-BHC, dieldrin, gamma-BHC, gamma-chlordane, and heptachlor epoxide. Of these 13 compounds identified in soil at the Site, only two compounds, chlordane and dieldrin, were detected at concentrations exceeding a regulatory screening level.

Chlordane was reported in 17 soil samples and ranged between an estimated 1.4 micrograms per kilogram (μ g/kg) (PER20 at 0.5 feet bgs) and 2,600 μ g/kg (PER1-SW2 at 0.5 feet bgs). Two chlordane concentrations reported in step-out soil boring PER1-SW2 were either equal to or exceed the DTSC SL of 440 μ g/kg.

Dieldrin was reported in nine (9) soil samples and ranged between 2.7 μg/kg (PER1-SW at 1.5 feet bgs) and 93 μg/kg (PER1 at 0.5 feet bgs). Dieldrin concentrations for PER1-0.5 (93 μg/kg), PER1-SE-0.5 (36 μg/kg), PER1-SW-0.5

(39 $\mu g/kg$), and PER1-SW2-0.5 (70 $\mu g/kg$) exceed the RSL of 34 $\mu g/kg$ for residential land use.

3.6 PCB Results

Laboratory results indicate that PCB concentrations were below the laboratory method detection limit in the subset of soil samples chosen for PCB analysis (eight samples and three duplicates collected from a depth of 0.5 feet bgs [Table 3]).

4.0 HUMAN HEALTH SCREENING EVALUATION

Areas investigated as part of this SSI were unpaved and adjacent to the perimeter sidewalk that borders the School property. As these areas are not paved or otherwise covered, a direct exposure pathway exists for members of the public and students who come in direct contact with surface soil or fugitive dust generated by soil disturbance. It is Leighton's understanding that one of the goals of this SSI was to assess shallow soil for COPCs identified in the Phase I ESA (WorleyParsons, 2016). Data obtained during this SSI will help to evaluate reuse and disposal options for soil that may be disturbed during planned perimeter upgrades.

Elevated levels of arsenic, DRO, chlordane, and dieldrin were identified at the Site based on the soil sampling activities conducted on October 27, 2018, November 3, 2018, and December 21, 2018, during which select samples were analyzed for arsenic, lead, mercury, TPH, OCPs, and PCBs (Tables 1 through 3), as described in Section 3. Results for lead, mercury, and PCBs were below their respective screening levels (Human Health Risk Assessment Note #3, and RSLs). Arsenic, DRO, chlordane and dieldrin are considered chemicals of concern (COCs) for the Site and are discussed in detail below.

Arsenic in Soil: A 12 mg/kg concentration of arsenic in soil represents an upper-bound value for background ambient levels of arsenic found in southern California and is actually a 95% upper confidence limit (UCL). The 12 mg/kg concentration was used as the screening level for arsenic at the Site (DTSC, 2008).

As summarized in Table 1, arsenic was detected in 42 soil samples with concentrations ranging from an estimated 0.98 mg/kg (PER14SE at 1.5 feet bgs) to 13 mg/kg (PER14 at 1.5 feet bgs). Due to the presence of sample results at or above 12 mg/kg in three (3) of the samples, a 95% upper confidence limit (UCL) analysis was completed. The analysis used the 42 detections above the MDL to determine if arsenic in soil exceeded the screening level, and would potentially present a human health risk to current or future occupants of the Site. The 95% UCL Analysis Report is included as Appendix F. The suggested UCL result for arsenic based on the ProUCL calculation was 6.304 mg/kg (95% adjusted gamma UCL). The median arsenic result is 4.5 mg/kg.

Adequate lateral and vertical delineation of elevated arsenic was accomplished by analysis of step-out and step-down samples adjacent to impacted sample locations PER12 and PER14 (Figures 3 and 5). Shallow soil where elevated arsenic concentrations where detected should be targeted for removal such that arsenic

remaining at the Site is below the DTSC-recommended ambient background concentration of 12 mg/kg (DTSC, 2008).

DRO in Soil: Concentrations of TPH were detected in every soil sample analyzed by EPA Method 8015B during this SSI. With the exception of the DRO concentration of 500 mg/kg detected in duplicate sample DUP-3 for sample location PER22 at 0.5 feet bgs, all other concentrations of GRO, DRO, and ORO were below laboratory detection limits and/or regulatory screening levels (Table 1).

Adequate lateral and vertical delineation of elevated DRO was accomplished by analysis of step-out and step-down samples adjacent to impacted sample location PER22 (Figure 3). It is recommended that shallow soil where elevated DRO results were reported be targeted for removal, so that DRO remaining at the Site is below the SFRWQCB ESL (230 mg/kg).

Dieldrin in Soil: Dieldrin was reported in nine (9) soil samples and ranged between 2.7 μg/kg (PER1-SW at 1.5 feet bgs) and 93 μg/kg (PER1 at 0.5 feet bgs). Dieldrin concentrations for PER1-0.5 (93 μg/kg), PER1-SE-0.5 (36 μg/kg), PER1-SW-0.5 (39 μg/kg), and PER1-SW2-0.5 (70 μg/kg) exceed the RSL of 34 μg/kg for residential land use (Table 2).

Based on the limited number of detected concentrations of dieldrin, the impacted area appears to be limited to the upper one foot of soil within the landscaped area at the northeast corner of the School property (Figure 3). Shallow soil where elevated dieldrin results were reported should be targeted for removal, so that dieldrin remaining at the Site is below the EPA RSL of $34 \mu g/kg$ (EPA, 2018).

Chlordane in Soil: Chlordane was reported in 17 soil samples and ranged between an estimated 1.4 µg/kg (PER20 at 0.5 feet bgs) and 2,600 µg/kg (PER1-SW2 at 0.5 feet bgs). Two chlordane concentrations reported in step-out soil boring PER1-SW2 were either equal to or exceed the DTSC SL of 440 µg/kg (Table 2).

Similar to dieldrin, elevated chlordane appears to be limited to the landscaped area in the vicinity of soil boring PER1. Only one boring contained soil concentrations of chlordane at or above regulatory screening levels (PER1-SW2). Elevated chlordane concentrations are collocated with shallow soil impacted by dieldrin. Shallow soil where chlordane results exceed a screening level should be targeted for removal, so that chlordane remaining at the Site is below the DTSC SL of 440 µg/kg.

Other COPCs in Soil (lead, mercury, GRO, ORO, PCBs, and the remaining OCPs): With the exception of limited areas with elevated arsenic, DRO, chlordane, and dieldrin, the SSI sampling results presented in this report demonstrate that soil analytical results for lead, mercury, GRO, ORO, PCBs, and the remaining OCPs were either below the laboratory detection limits or below regulatory screening levels.

As discussed in Section 3.2, the soil sample collected at 0.5 feet bgs at boring location PER24 contained a reported a total lead concentration of 64 mg/kg. Although this concentration of lead is below the DTSC-recommended screening level for lead of 80 mg/kg, the soil is classified as California-restricted non-RCRA hazardous waste based on a soluble lead concentration above the regulatory limit of 5 mg/L (STLC). Given the identified presence of readily soluble lead, soil with elevated lead should be targeted for removal in the vicinity of soil boring PER24.

Arsenic, DRO, chlordane, and dieldrin have been identified as COCs in soil. Based on District preference to remove soil with elevated arsenic, lead, TPH, and OCPs, further action appears warranted at the Site.

5.0 COMMUNITY PROFILE

5.1 Community Demographics

A brief summary of the community demographics for the zip code 91607 in Los Angeles County according to the 2010 US Census (factfinder.census.gov) is as follows:

Total Population: 27,927

• Male: 13,635 (48.8%)

• Female: 14,292 (51.2%)

Median Age: 38.2

Population 18 Years and Over: 82.5%

Total Housing Units: 12,859

Average Household Size: 2.15

Population by Race: White: 18,523 (66.3%)

Hispanic or Latino: 5,463 (19.6%)

Asian: 1,586 (5.7%)

Black or African American: 1,470 (5.3%)

Other: 885 (3.1%)

5.2 <u>Local Participation and Involvement</u>

At the time of this investigation, Leighton is not aware of any current or past media coverage with relation to the School property or the Site. A work notice, in the form of a flyer, was produced in English and Spanish (double-sided) to provide members of the community with details regarding the SSI including who would perform the work, project schedule, when and where the results of the investigation would be posted, and who to contact regarding additional information. On October 17 and 18, 2018, this work notice flyer was handed out to all Colfax Charter Elementary School staff, mailed to all parents of students and interested community members added to the work notice mailing list at the community meeting, hand-delivered to all line-of-site neighbors of the School, and posted along the boundary fence of the School property.

No specific environmental concerns or issues have been brought to the District's attention regarding the on-site activities at this time. In terms of project visibility, the on-site work took place outside of School hours (three consecutive Saturdays and Friday during a holiday break) to minimize any interference with school activities. Line-of-site neighbors, School staff, parents and interested community members were given copies of the work notice flyer. At this time, Leighton is unaware of environmental concerns or issues with relation to neighboring sites.

6.0 OPINION OF ENVIRONMENTAL PROFESSIONAL

Based on the SSI sampling results (Tables 1 through 3), elevated levels of arsenic, DRO, chlordane, and dieldrin were reported for soil in limited areas of the Site (Figure 3) and further action appears warranted. A removal action should be completed to target the four areas (PER1, PER12, PER14, and PER22) where impacted soils were identified above regulatory screening levels. Additionally, lead in soil that exceeds the STLC (PER24 at 0.5 feet bgs) should be targeted for removal (Figure 6).

Arsenic and DRO-impacted soil above regulatory screening levels appears limited based on the step-out and step-down sampling completed during the SSI. Figures 5 and 6 include approximate areas where soil excavation is recommended to address elevated arsenic and DRO concentrations identified at the Site.

Step-down sampling for dieldrin confirmed that impacted soil is generally within the upper 6 to 12 inches bgs, however, step-out sampling conducted in five (5) locations surrounding the original boring location (PER1) indicate that dieldrin concentrations above the RSL are laterally extensive in the northeast landscaped area. While delineating soil impacted by dieldrin, elevated chlordane concentrations above the DTSC SL were identified in step-out boring PER1-SW2. Leighton recommends that limited soil excavation be conducted to remove shallow soil with dieldrin and/or chlordane concentrations above a screening level (34 μ g/kg for dieldrin and 440 μ g/kg for chlordane). The recommended excavation area for OCP-impacted soil is shown on Figure 4.

The elevated concentrations of arsenic, DRO, and OCPs were detected in limited areas and were not significantly higher than applicable environmental screening levels. The data set generated as part of this SSI appears adequate to address the limited areas where impacted soil was identified. With the exception of excavation bottom and sidewall confirmation sampling, additional sampling at the Site does not appear warranted at this time.

Although total concentrations of lead detected in soil samples during this investigation were below residential screening levels, one discrete sample contained soluble lead above the STLC, thus meeting the criteria for classification as a California-restricted non-RCRA hazardous waste. It is recommended that the shallow soil designated as a hazardous waste be removed from the Site in addition to the four (4) health-risk based soil removals discussed above (see Figure 6).

The impacted material identified in this SSI can likely be removed and segregated from other soils being disturbed during the implementation of the Colfax Charter Elementary Perimeter Upgrade Project. Alternatively, the District could also conduct a housekeeping excavation with confirmation sampling to provide separate documentation for the removal of impacted soils at the Site.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Site consists of the perimeter area around the Colfax Charter Elementary School property boundary and represents proposed development areas associated with the Colfax Charter Elementary School Perimeter Upgrade Project (Figure 2). The primary objectives of this SSI were to assess shallow soil for potential environmental concerns identified in the Phase I ESA for the Site; and to evaluate the overall Site health risk based on soil analytical screening results for COPCs (lead, arsenic, mercury, OCPs TPH, and PCBs).

As presented in this SSI report, elevated levels of dieldrin, chlordane, arsenic, and DRO were reported for soil in limited areas at the Site (Figure 3) and further action appears warranted. Based on the laboratory analytical results, limited soil excavation is recommended to remove soil impacted by COCs above appropriate regulatory screening levels. Recommended areas for soil removal are presented in Figures 4, 5, and 6 and described below.

- Removal of OCP-impacted soil is recommended in the vicinity of soil samples PER1, PER1-SW, PER1-SE, and PER1-SW2. Based on step-out sampling results for dieldrin in this area, a conservative excavation footprint of 60 feet by 25 feet is proposed (see Figure 4). Total depth of the excavation should extend to a minimum of 1-foot bgs, where feasible. During the investigation, mature trees were noted within the landscaped area surrounding borings PER1 and PER2. Tree roots associated with these trees may limit the amount of soil that can be removed within the proposed excavation area. Following feasible soil removal activities, six sidewall confirmation samples (two samples along the north and south wall plus one sample along the east and west walls) should be collected at a depth of 0.5 feet bgs at the lateral limits of the completed excavation. Two confirmation samples should be collected from the completed excavation bottom (one of the bottom samples should be located in the vicinity of boring PER1-SW2 to verify that chlordane concentrations of remaining soil are below 440 µg/kg. Confirmation samples should be analyzed for OCPs by EPA Method 8081A. If confirmation samples contain concentrations of OCPs above appropriate regulatory screening levels, additional soil removal and confirmation sampling should be conducted, as appropriate.
- An excavation of arsenic-impacted soil is recommended in the vicinity of sample locations PER12 and PER14. Based on low arsenic concentrations reported in step-out samples collected near PER12 and PER14, excavation areas of approximately 8 feet by 8 feet are recommended around PER12 and PER14 (Figure

- 5). The proposed excavation around sample location PER12 should extend to a minimum depth of 1-foot bgs while the proposed excavation around PER14 should extend to a minimum depth of 3 feet bgs. Confirmation samples should be collected at approximately 0.5 feet bgs from each sidewall at PER 12 and at 1.5 feet bgs from each sidewall at PER14 and one confirmation sample should be collected from the completed excavation bottom (five samples per excavation). Confirmation samples should be analyzed for arsenic by EPA Method 6020. If confirmation samples contain concentrations of arsenic at or above 12 mg/kg (upper-bound limit for background arsenic in soil), further soil removal and confirmation sampling should be conducted, as appropriate.
- An excavation of DRO-impacted soil is recommended in the vicinity of sample location PER22. Based on low DRO concentrations reported in step-out samples collected near PER22, an excavation area of approximately 8 feet by 8 feet is recommended around PER22 (Figure 6). The proposed excavation should extend to a minimum depth of 1-foot bgs. Confirmation samples should be collected at approximately 0.5 feet bgs from each sidewall in the excavation and one confirmation sample should be collected from the completed excavation bottom (five samples total). Confirmation samples should be analyzed for DRO by EPA Method 8015B. If confirmation samples contain concentrations of DRO above 230 mg/kg (SFRWQCB ESLs), additional soil removal and confirmation sampling should be conducted, as appropriate.
- An excavation of soil with lead above the STLC is recommended in the vicinity of sample location PER24. The impacted area does not propose an immediate health risk (total lead reported for soil is below the DTSC SL of 80 mg/kg), however, the material is classified as California-restricted non-RCRA hazardous waste and should be segregated for proper disposal. An excavation measuring approximately 5 feet by 5 feet is recommended around location PER24 (Figure 6). The proposed excavation should extend to a minimum of 1-foot bgs. Confirmation samples should be collected at approximately 0.5 feet bgs from each sidewall in the excavation and one confirmation sample should be collected from the completed excavation bottom (five samples total). Confirmation samples should be analyzed for total lead by EPA Method 6010. If confirmation samples contain concentrations of total lead above 50 mg/kg, a California Waste Extraction Test should be performed to confirm that soluble lead is below the STLC of 5 mg/L. If confirmation samples exceed the STLC for lead, additional soil removal and confirmation sampling should be conducted, as appropriate.

Leighton understands that soil disturbance activities independent of the recommended soil removals in this SSI report are anticipated as part of the Colfax Charter Elementary School Perimeter Upgrade Project. At this time, Leighton is not aware of specific Perimeter Upgrade Project excavation or soil reuse details. Should the District choose to conduct the remedial soil excavations described above concurrently with Perimeter Upgrade Project soil disturbance, soil removed from the four remedial excavation areas should be segregated and not permitted as backfill material at the Site. Soil generated from the proposed remedial excavation areas should be appropriately secured from public access, sampled in accordance with District waste characterization procedures, and profiled for offsite disposal at an LAUSD approved disposal facility.

In general, observations should be made during all trenching/excavation activities for areas of possible contamination such as, but not limited to, the presence of underground facilities, buried debris, waste drums, tanks, stained soil or odorous soils. Should such materials be encountered, further investigation and analysis may be necessary at that time. Although below residential health screening criteria, one soil sample collected during this SSI, PER24-0.5, contained a concentration of lead exceeding the STLC (as described in Section 3.2). Should soil generated from the vicinity of sample location PER24 require disposal, laboratory analytical data obtained during this SSI supports classification of the soil as California-restricted non-RCRA hazardous waste.

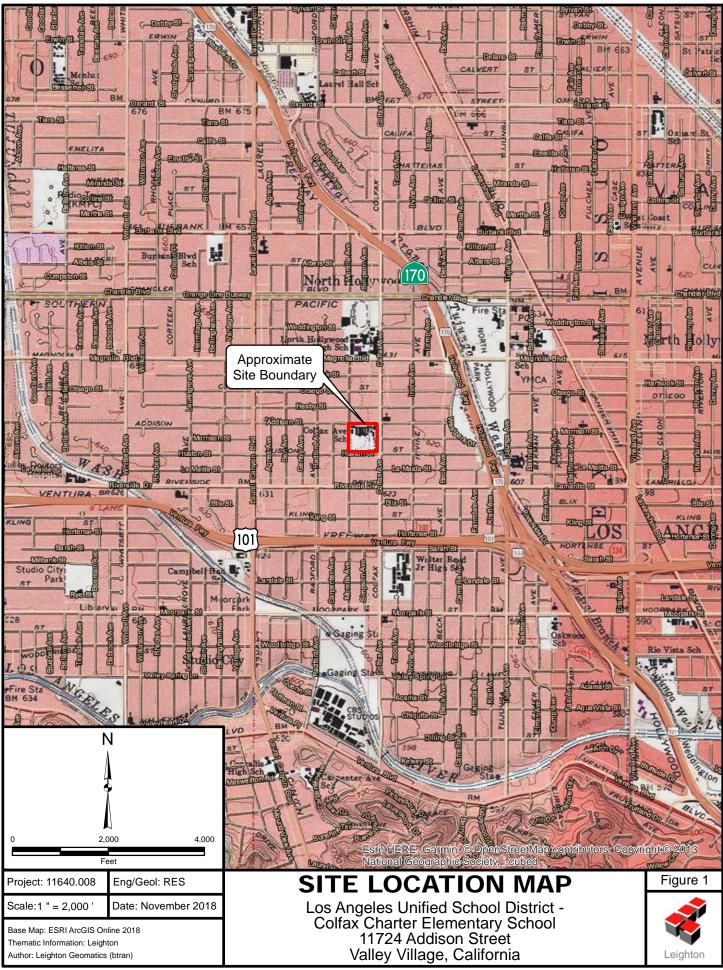
Given the limited extent of soil containing elevated COC concentrations, and due to the fact that dieldrin is not included on the list of "toxic air contaminants" in the South Coast Air Quality Management District (AQMD) Rule 1466 (AQMD, 2017), it is not anticipated that the total volume of soil disturbance involving material impacted by COCs considered as "toxic air contaminants" will exceed the minimum 50 cubic yards as described in the Rule. A summary of the approximate soil volumes recommended for removal is provided in the following table:

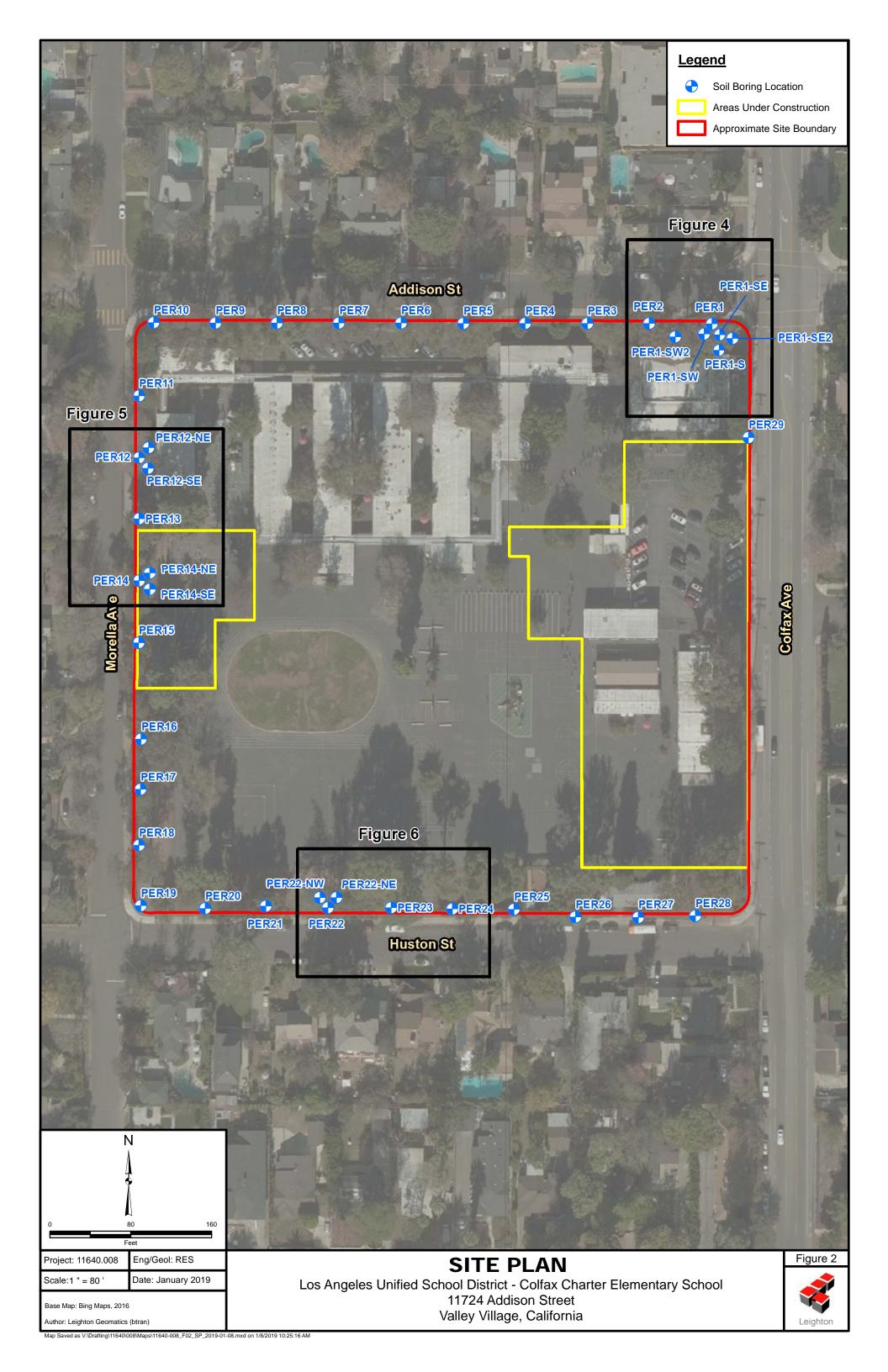
Location	Approximate Volume of Soil Applicable to AQMD Rule 1466 (cubic yards)	Approximate Volume of Soil Not Applicable to AQMD Rule 1466 (cubic yards)
PER1	3.7	51.8
PER12	2.4	
PER14	7.1	
PER22		2.4
PER24	0.9	
Totals	14.1	54.2

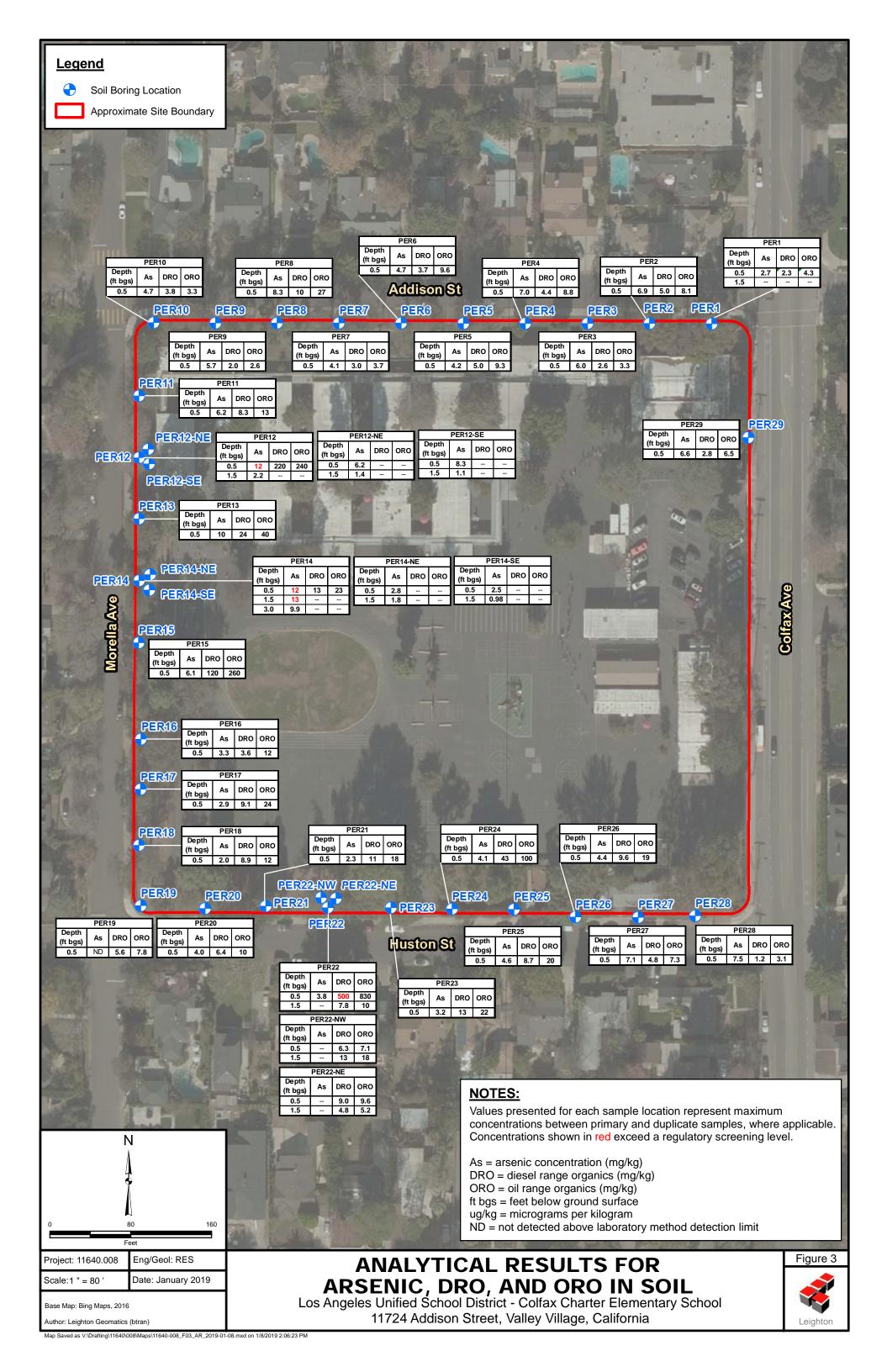
In an effort to control fugitive dust during all earth-moving activities, it is recommended that the District and its contractors follow the best available control measures described in Table 1 of AQMD Rule 403 for the control of fugitive dust during applicable earth-moving activities such as, but not limited to, trenching, stockpiling, and truck loading (AQMD, 2005).

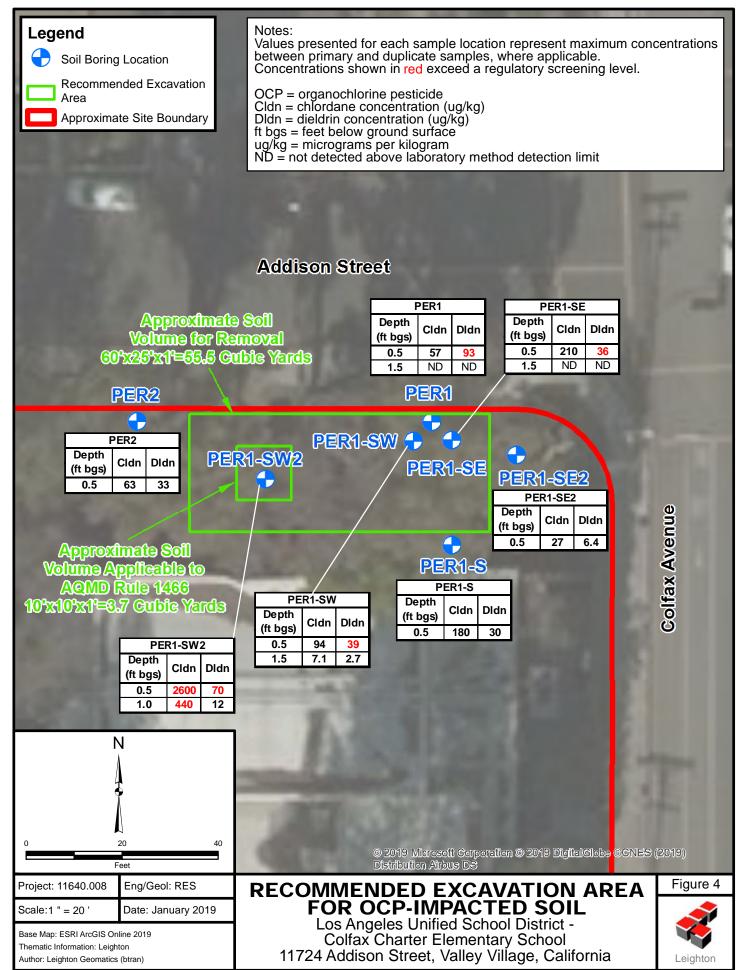
8.0 LIMITATIONS

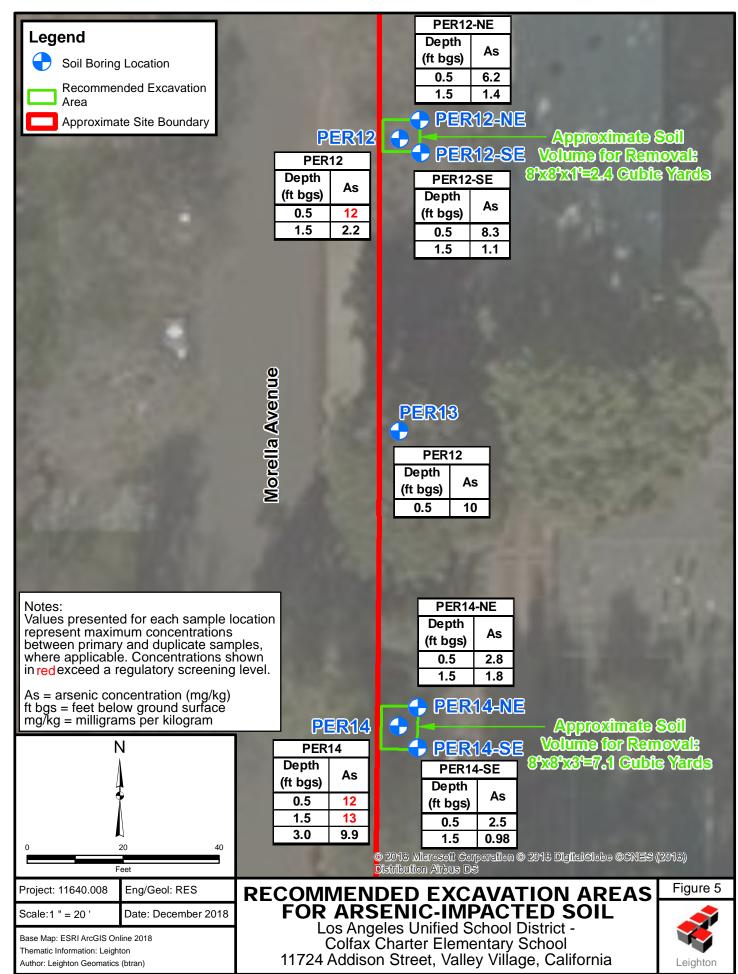
The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. Opinions, conclusions, and recommendations contained in this report apply to conditions existing when the services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. Where subsurface exploratory work, monitoring, and/or testing was performed, our professional opinions and conclusions are based in part on interpretation of data from discrete sampling or measurement locations that may not represent actual conditions at un-sampled or un-measured locations. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of the services. We assume no responsibility for conditions we were not authorized to evaluate, or conditions not generally recognized as predictable when the services were performed. We do not warranty the accuracy of information supplied by others, or the use of segregated portions of this report.

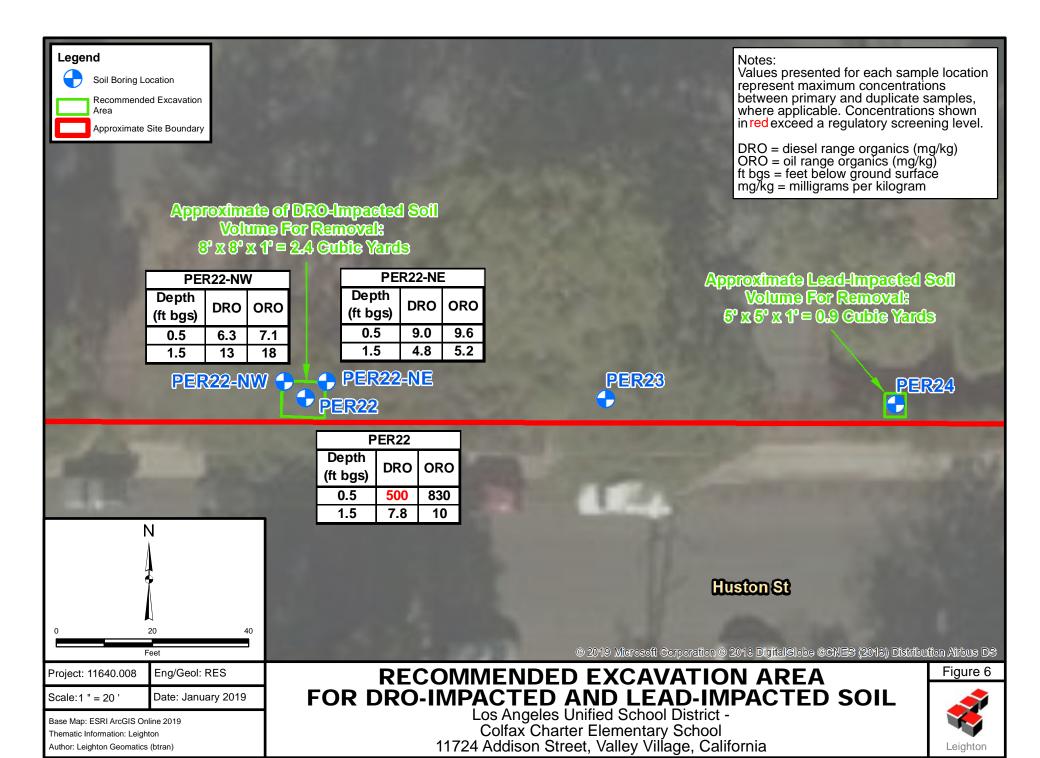

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Leighton should be contacted if the reader requires any additional information, or has questions regarding content, interpretations presented, or completeness of this document.


Leighton's professional opinions and recommendations regarding environmental conditions, as presented in this report, are based on limited subsurface assessment and chemical analyses data. Further assessment of potential adverse environmental impacts from past on-site and/or nearby use of hazardous materials may be accomplished by a more comprehensive assessment. The samples collected and used for testing, and the observations made, are believed to be representative of the area(s) evaluated; however, conditions can vary significantly between and beyond the sampling locations. Variations in soil conditions likely exist beyond the points explored in this assessment and related excavation.




FIGURES





TABLES

Table 1

Summary of Metal and Total Petroleum Hydrocarbon Results in Soil

LAUSD - Colfax Charter Elementary School, Los Angeles, California

		Sample	EPA 6020 (mg/kg)	EPA 6010 (mg/kg)	CA-WET (mg/L)	EPA 7471A (mg/kg)	<u>'-</u>	EPA Method 015B (mg/kg	-
ID	(ft bgs)	Date	Arsenic	Lead	STLC (Lead)	Mercury	GRO	DRO	ORO
Regulatory Guidar		ning Levels	s (mg/kg)						
	A RSL ²		0.68	400		11		-	
DTS	C SLs ³		0.11	80 ⁵		1.0			
DTSC Ba	ckground	i ⁴	12				-	-	
	CB ESLs ⁶	5	0.067	80		13	100	230	5,100
STLC	(mg/L)				5			-	
PER1-0.5	0.5	10/27/18	2.0 D1	4.0		0.05 J	ND<0.20	1.5	4.3
DUP-1	0.5	10/27/18	2.7 D1	0.63 J		0.03 J	ND<0.20	2.3	1.6
PER2-0.5	0.5	10/27/18	6.9 D1	2.8		0.06 J	ND<0.20	5.0	8.1
PER3-0.5	0.5	10/27/18	6.0 D1	5.4		0.05 J	ND<0.20	2.6	3.3
PER4-0.5	0.5	10/27/18	7.0 D1	15		0.05 J	ND<0.20	4.4	8.8
PER5-0.5	0.5	10/27/18	4.2 D1	6.6		0.07 J	ND<0.20	5.0	9.3
PER6-0.5	0.5	10/27/18	4.7 D1	1.6		0.08 J	ND<0.20	3.7	9.6
PER7-0.5	0.5	10/27/18	4.1 D1	1.6		0.07 J	ND<0.20	3.0	3.7
PER8-0.5	0.5	10/27/18	8.3 D1	9.4		0.07 J	ND<0.20	10	27
PER9-0.5	0.5	10/27/18	5.7 D1	0.98 J		0.08 J	ND<0.20	2.0	2.6
PER10-0.5	0.5	10/27/18	4.7 D1	0.71 J		0.06 J	ND<0.20	3.8	3.3
PER11-0.5	0.5	10/27/18	6.2 D1	1.4		0.03 J	ND<0.20	8.3	13
PER12-0.5	0.5	10/27/18	11 D1	18		0.10 J	ND<0.20	110	140
DUP-2	0.5	10/27/18	12 D1	20		0.06 J	ND<0.20	220	240
PER12-1.5	1.5	10/27/18	2.2 D1						
PER12-NE-0.5	0.5	11/03/18	6.2 D1						
PER12-NE-1.5	1.5	11/03/18	1.4 D1						
PER12-SE-0.5	0.5	11/03/18	8.3 D1						
PER12-SE-1.5	1.5	11/03/18	1.1 D1						
PER13-0.5	0.5	10/27/18	10 D1	13		0.04 J	ND<0.20	24	40
PER14-0.5	0.5	10/27/18	12 D1	14		0.04 J	ND<0.20	13	23
PER14-1.5	1.5	10/27/18	13 D1						
PER14-3.0	3	10/27/18	9.9 D1						
PER14-NE-0.5	0.5	11/03/18	2.8 D1						
PER14-NE-1.5	1.5	11/03/18	1.8 D1						
PER14-SE-0.5	0.5	11/03/18	2.5 D1						
PER14-SE-1.5	1.5	11/03/18	0.98 J D1						
PER15-0.5	0.5	10/27/18	6.1 D1	67	3.7	0.07 J	ND<0.20	120	260
PER16-0.5	0.5	10/27/18	3.3 D1	7.3		0.05 J	ND<0.20	3.6	12
PER17-0.5	0.5	10/27/18	2.9 D1	2.0		0.02 J	ND<0.20	9.1	24
PER18-0.5	0.5	10/27/18	2.0 D1	3.6		0.03 J	ND<0.20	8.9	12
PER19-0.5	0.5	10/27/18	ND<0.04	1.8		0.03 J	ND<0.20	5.6	7.8
PER20-0.5	0.5	10/27/18	4.0 D1	7.8		0.03 J	ND<0.20	6.4	10
PER21-0.5	0.5	10/27/18	2.3 D1	2.6		0.05 J	ND<0.20	11	18
PER22-0.5	0.5	10/27/18	3.8 D1	8.2		0.05 J	ND<0.20	74	110
DUP-3	0.5	10/27/18	3.8 D1	34		0.05 J	ND<0.20	500	830
PER22-1.5	1.5	10/27/18						7.8	10
								6.3	7.1
PER22-NW-1.5	1.5	11/03/18						13	18
PER22-NE-0.5	0.5	11/03/18						9.0	9.6
PER22-NE-1.5 1.5 11/03/18								4.8	5.2

Table 1

Summary of Metal and Total Petroleum Hydrocarbon Results in Soil

LAUSD - Colfax Charter Elementary School, Los Angeles, California

Sample	Depth	Sample	EPA 6020 (mg/kg)	EPA 6010 (mg/kg)	CA-WET (mg/L)	EPA 7471A (mg/kg)		EPA Method 015B (mg/kg	
ID	(ft bgs)	Date	Arsenic	Lead	STLC (Lead)	Mercury	GRO	GRO DRO	
Regulatory Guidan	ce Scree	ning Levels	s (mg/kg)						
USEP	A RSL ²		0.68	400	-	11	1	-	-
DTS	C SLs ³		0.11	80 ⁵	-	1.0	-	-	-
DTSC Ba	ckground	I ⁴	12				-		-
SFRWQ	CB ESLs	3	0.067	80		13	100	230	5,100
STLC	(mg/L)		-		5		-		-
PER23-0.5	0.5	10/27/18	3.2 D1	3.0	-	0.04 J	ND<0.20	13	22
PER24-0.5	0.5	10/27/18	4.1 D1	64	8.3	0.06 J	ND<0.20	43	100
PER25-0.5	0.5	10/27/18	4.6 D1	37		0.05 J	ND<0.20	8.7	20
PER26-0.5	0.5	10/27/18	4.4 D1	2.9		0.04 J	ND<0.20	9.6	19
PER27-0.5	0.5	10/27/18	7.1 D1	2.3		0.05 J	ND<0.20	4.8	7.3
PER28-0.5	0.5	10/27/18	7.5 D1	1.5		0.06 J	ND<0.20	1.2	3.1
PER29-0.5	0.5	10/27/18	6.6 D1	2.1		0.06 J	ND<0.20	2.8	6.5

Notes and Abbreviations:

- 1. **Bold** value indicates analyte detected above the laboratory method detection limit (MDL). A yellow-shaded cell indicates where a chemical concentration exceeds a regulatory screening level.
- 2. USEPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites (May 2018). Criteria selected: Residential soil, Total Hazard Quotient = 1.0, Target risk of 1.0E-6
- 3. Department of Toxic Substances Control (DTSC), Modified Screening Levels (SLs), Human Health Risk Assessment Note 3, June 2018. Criteria selected: residential soil, lowest value of the cancer and non-cancer endpoint
- 4. DTSC, Determination of a Southern California Regional Background Arsenic Concentration in Soil (March 2008)
- 5. DTSC recommends that a 95% upper confidence limit on the arithmetic mean calculated to be 80 mg/kg or less is protective of human health
- 6. San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels (February 2016)
- ND: Analyte is not detected at or above the denoted method detection limit
- J: Estimated concentration. The value falls between the laboratory MDL and the practical quantitation limit (PQL)
- D1: Sample required dilution due to possible matrix interference
- CA-WET: California Title 22 waste extraction test
- STLC: soluble threshold limit concentration
- mg/kg: milligrams per kilogram
- mg/L: milligrams per liter
- ft bgs: feet below ground surface
- --: not analyzed or no published value

Table 2 Summary of Organochlorine Pesticide Results in Soil

LAUSD - Colfax Charter Elementary School, Los Angeles, California

			EPA Method 8081A (μα/kα)																					
					Φ								. A method		9)									
Sample ID	Depth (ft bgs)	Sample Date	Dichlorodiphenyldichloroethane (4,4'-DDD)	Dichlorodiphenyldichloroethyler e (4,4'-DDE)	Dichlorodiphenyltrichloroethane (4,4'-DDT)	Aldrin	Alpha-hexachlorocyclohexane (alpha-BHC)	Alpha-Chlordane	Beta-hexachlorocyclohexane (beta-BHC)	Chlordane (technical)	Delta-hexachlorocyclohexane (delta-BHC)	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin Ketone	Gamma-BHC (Lindane)	Gamma-Chlordane	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene
PER1-0.5	0.5	10/27/2018	1.6 J	ND<0.53	ND<1.0	ND<0.37	ND<1.1	10	ND<0.6	57 J	ND<0.33	93	ND<1.0	ND<0.29	ND<0.77	ND<0.39	ND<3.1	ND<1.3	ND<1.0	4.9 J	ND<0.47	4.4 J	ND<1.8	ND<47
DUP-1	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER1-1.5 PER1-S-0.5	1.5 0.5	10/27/2018 12/21/18	ND<0.07 ND<0.07	ND<0.05 5.9	ND<0.10 5.0	ND<0.04 ND<0.12	ND<0.11 ND<0.11	ND<0.12 18	ND<0.06 ND<0.06	ND<1.1 180	ND<0.03 ND<0.12	ND<0.13	ND<0.10 ND<0.10	ND<0.03 ND<0.15	ND<0.08 ND<0.16	ND<0.04 ND<0.14	ND<0.31	ND<0.13 ND<0.13	ND<0.10 ND<0.10	ND<0.07	ND<0.05 ND<0.12	ND<0.09 3.1	ND<0.18 ND<0.18	ND<4.7 ND<4.7
PER1-SE-0.5	0.5	11/03/18	ND<0.07	ND<0.05	ND<0.10	ND<0.12	ND<0.11	23	ND<0.06	210	ND<0.12	36	ND<0.10	ND<0.13	ND<0.10	ND<0.14		ND<0.13	ND<0.10	17	ND<0.12	6.4	ND<0.18	ND<4.7
PER1-SE-1.5	1.5	11/03/18	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04		ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER1-SE2-0.5	0.5	12/21/18	ND<0.07	ND<0.11	ND<0.10	ND<0.12	ND<0.11	2.9	ND<0.06	27	ND<0.12	6.4	ND<0.10	ND<0.15	ND<0.16	ND<0.14	ND<0.31	ND<0.13	ND<0.10	1.9	ND<0.12	0.66 J	ND<0.18	ND<4.7
PER1-SW-0.5	0.5	11/03/18	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	10	ND<0.06	94	ND<0.03	39	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	7.1	ND<0.05	5.8	ND<0.18	ND<4.7
PER1-SW-1.5	1.5	11/03/18	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	0.70 J	ND<0.06	7.1 J	ND<0.03	2.7	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	0.43 J	ND<0.05	0.64 J	ND<0.18	ND<4.7
PER1-SW2-0.5	0.5	12/21/18	ND<0.7	ND<1.1	ND<1.0	ND<1.2	ND<1.1	320	ND<0.60	2600	ND<1.2	70	ND<1.0	ND<1.5	ND<1.6	ND<1.4	ND<3.1	ND<1.3	ND<1.0	190	ND<1.2	38	ND<1.8	ND<47
PER1-SW2-1.0	1	12/21/18	ND<0.35	ND<0.54	ND<0.50	ND<0.62	ND<0.53	63	ND<0.30	440	ND<0.62	12	ND<0.50	ND<0.77	ND<0.80	ND<0.68	ND<1.6	ND<0.63	ND<0.52	40	ND<0.59	ND<0.44	ND<0.89	ND<23
PER2-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	6.6	ND<0.06	63	ND<0.03	33	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	3.4	ND<0.05	3.4	ND<0.18	ND<4.7
PER3-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04		ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER4-0.5	0.5	10/27/2018	ND<0.07	1.6 J	ND<0.10	ND<0.04	ND<0.11	4.1	ND<0.06	49	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	2.1	ND<0.05	3.8	ND<0.18	ND<4.7
PER5-0.5 PER6-0.5	0.5 0.5	10/27/2018 10/27/2018	ND<0.07 ND<0.07	ND<0.05 ND<0.05	ND<0.10 ND<0.10	ND<0.04 ND<0.04	ND<0.11 ND<0.11	ND<0.12 ND<0.12	ND<0.06 ND<0.06	ND<1.1 ND<1.1	ND<0.03 ND<0.03	ND<0.13 ND<0.13	ND<0.10 ND<0.10	ND<0.03 ND<0.03	ND<0.08 ND<0.08	ND<0.04 ND<0.04	ND<0.31 ND<0.31	ND<0.13 ND<0.13	ND<0.10 ND<0.10	ND<0.07 ND<0.07	ND<0.05 ND<0.05	ND<0.09 ND<0.09	ND<0.18 ND<0.18	ND<4.7 ND<4.7
PER6-0.5 PER7-0.5	0.5	10/27/2018	ND<0.07		ND<0.10	ND<0.04	ND<0.11	0.21 J	ND<0.06	3.3 J	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04		ND<0.13	ND<0.10	0.27 J	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER8-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	4.2	ND<0.06	40	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	1.9	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER9-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	0.13 J	ND<0.18	ND<4.7
PER10-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER11-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	0.12 J	ND<0.18	ND<4.7
PER12-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	1.9	ND<0.12	ND<0.06	ND<1.1	0.89 J	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
DUP-2	0.5	10/27/2018	ND<0.07	7.9	ND<0.10	1.1	ND<0.11	ND<0.12	ND<0.06	ND<1.1	2.0	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER13-0.5	0.5	10/27/2018	0.35 J	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER14-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	0.79 J	ND<0.06	8.8	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	0.87 J	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER15-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	10	ND<0.04	ND<0.11	6.5	ND<0.06	72	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	5.8	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER16-0.5	0.5	10/27/2018	ND<0.07		ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31		ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER17-0.5	0.5	10/27/2018	ND<0.07	ND<0.05		ND<0.04	ND<0.11	ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31		ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER18-0.5	0.5 0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12 ND<0.12	ND<0.06	ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08 ND<0.08	ND<0.04 ND<0.04	ND<0.31 ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09 ND<0.09	ND<0.18	ND<4.7 ND<4.7
PER19-0.5 PER20-0.5	0.5	10/27/2018 10/27/2018	ND<0.07 0.13 J	ND<0.05 ND<0.05	ND<0.10 ND<0.10	ND<0.04 ND<0.04	ND<0.11 ND<0.11	0.12 J	ND<0.06 ND<0.06	ND<1.1 1.4 J	ND<0.03	ND<0.13 ND<0.13	ND<0.10 ND<0.10	ND<0.03 ND<0.03	ND<0.08	ND<0.04 ND<0.04	ND<0.31	ND<0.13 ND<0.13	ND<0.10 ND<0.10	ND<0.07 0.09 J	ND<0.05 ND<0.05	ND<0.09	ND<0.18 ND<0.18	ND<4.7 ND<4.7
PER20-0.5 PER21-0.5	0.5	10/27/2018		1									ł			1					+		ND<0.18	
PER22-0.5	0.5	10/27/2018		ND<0.05				ND<0.12	0.70 J							ND<0.04				ND<0.07	ND<0.05			ND<4.7
DUP-3	0.5	10/27/2018		ND<0.05			ND<0.11		ND<0.06							ND<0.04							ND<0.18	
PER23-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12		ND<1.1	ND<0.03	ND<0.13	ND<0.10	ND<0.03		ND<0.04				ND<0.07			ND<0.18	ND<4.7
PER24-0.5	0.5	10/27/2018		ND<0.05		ND<0.04	1.7	2.7	ND<0.06	27	ND<0.03			ND<0.03						2.4			ND<0.18	ND<4.7
PER25-0.5	0.5	10/27/2018	ND<0.07	1.8 J	ND<0.10	ND<0.04	ND<0.11	0.85 J	ND<0.06	8.8	ND<0.03	ND<0.13	ND<0.10	ND<0.03	ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	0.69 J	ND<0.05	ND<0.09	ND<0.18	ND<4.7
PER26-0.5	0.5	10/27/2018		ND<0.05		ND<0.04	ND<0.11		ND<0.06		ND<0.03			ND<0.03						ND<0.07			ND<0.18	ND<4.7
PER27-0.5	0.5	10/27/2018		ND<0.05		ND<0.04	ND<0.11	ND<0.12			ND<0.03									ND<0.07			ND<0.18	
PER28-0.5	0.5	10/27/2018		ND<0.05			ND<0.11	ND<0.12			ND<0.03									ND<0.07	ND<0.05			ND<4.7
PER29-0.5	0.5	10/27/2018	ND<0.07	ND<0.05	ND<0.10	ND<0.04	ND<0.11	ND<0.12	ND<0.06		ND<0.03				ND<0.08	ND<0.04	ND<0.31	ND<0.13	ND<0.10	ND<0.07	ND<0.05	ND<0.09	ND<0.18	ND<4.7
	EDA DO:	2	1.000	2.000	1.000	20	06		200		ry Guidance			<u> </u>		10.000			F70		420	70	220.000	400
	SEPA RSL TSC SLs ³		1,900	2,000	1,900	39	86		300	1,700 440		34	470,000			19,000		-	570		130	70	320,000	490
U	I SU SLS		-		-					440							-	-						

Notes and Abbreviations:

- 1. **Bold** value indicates analyte detected above the laboratory method detection limit (MDL). A yellow-shaded cell indicates where a chemical concentration exceeds a regulatory screening level.
- 2. USEPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites (May 2018). Criteria selected: Residential soil, Total Hazard Quotient = 1.0, Target risk of 1.0E-6
- 3. Department of Toxic Substances Control (DTSC), Modified Screening Levels (SLs), Human Health Risk Assessment Note 3, January 2018. Criteria selected: residential soil, lowest value of the cancer and non-cancer endpoint ND: Analyte is not detected at or above the denoted method detection limit.
- J: Estimated concentration. The value falls between the laboratory MDL and the practical quantitation limit (PQL) μ g/kg: micrograms per kilogram

ft bgs: feet below ground surface

Table 3 Summary of Polychlorinated Biphenyl Results in Soil

LAUSD - Colfax Charter Elementary School, Los Angeles, California

Sample	Depth			EPA Method 8082 (μg/kg)											
ID	(ft bgs)	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268				
PER1-0.5	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
DUP-1	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
PER11-0.5	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
DUP-2	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
PER21-0.5	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
PER22-0.5	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
DUP-3	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
PER24-0.5	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
PER25-0.5	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
PER27-0.5	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
PER28-0.5	0.5	10/27/2018	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6	ND<4.6				
				Regu	latory Guidano	e Screening Le	evels (µg/kg)								
L	ISEPA RS	SL ²	4,100	200	170	230	230	240	240						
	DTSC SL	s³	-	-			-		440						

Notes and Abbreviations:

- 1. Bold value indicates analyte detected above the laboratory method detection limit (MDL)
- 2. USEPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites (May 2018). Criteria selected: Residential soil, Total Hazard Quotient = 1.0, Target risk of 1.0E-6
- 3. Department of Toxic Substances Control (DTSC), Modified Screening Levels (SLs), Human Health Risk Assessment Note 3, June 2018. Criteria selected: residential soil, lowest value of the cancer and non-cancer endpoint

ND: Analyte is not detected at or above the denoted method detection limit.

 $\mu g/kg$: micrograms per kilogram

ft bgs: feet below ground surface

APPENDIX A REFERENCES

APPENDIX A

References

- California Department of Water Resources (DWR), Bulletin No. 104, Planned Utilization of the Groundwater Basins of the Coastal Plain of Los Angeles County, Reprinted April 1998, Appendix A, Groundwater Geology, 1961.
- Leighton Consulting, Inc., Revised Preliminary Environmental Assessment Equivalent Document, Colfax Charter Elementary School Classroom Addition Project, 11724 Addison Street, Valley Village, California 91607, June 8, 2016.
- San Francisco Bay Regional Water Quality Control Board (SFRWQCB), Environmental Screening Levels, February 2016 (revision 3).
- Soloff Surveying and Consulting, Title, Topographic and Utility Mapping, ALTA Survey, Colfax Elementary School, 11724 Addison Street, Los Angeles, CA 91607, Drawing No. CES-1.DWG, August 7, 2015.
- South Coast Air Quality Management District (AQMD), 2005, Rule 403: Fugitive Dust, http://www.aqmd.gov/home/rules-compliance/compliance/inspectionprocess/visible-emissions-public-nuisance-fugitive-dust, adopted May 7, 1976 and amended June 3, 2005.
- ______, 2017, Rule 1466: Control of Particulate Emissions from Soils with Toxic Air Contaminants, http://www.aqmd.gov/home/rules-compliance/compliance/rule-1466, adopted July 7, 2017 and amended December 1, 2017.
- State of California Environmental Protection Agency Department of Toxic Substances Control (DTSC), Interim Guidance, Evaluation of School Sites with Potential Soil Contamination as a Result of Lead from Lead-Based Paint, Organochlorine Pesticides from Termiticides, and Polychlorinated Biphenyls from Electrical Transformers, dated June 9, 2006.
- _____, Determination of a Southern California Regional Background Arsenic Concentration in Soil, http://www.dtsc.ca.gov/ upload/Background-Arsenic.pdf, 2008.
- _____, Interim Guidance for Sampling Agricultural Properties (Third Revision), dated April 30, 2008.

- United States Census Bureau, Profile of General Population and Housing Characteristics: 2010, Zip Code 91607, http://factfinder.census.gov/, 2010.
- United States Environmental Protection Agency (EPA), Regional Screening Levels, Region 9: Pacific Southwest, Residential Soil Tables (TR-1E-06, THQ=1.0), http://www.epa.gov/region9/superfund/prg/, May 2018.
- WorleyParsons, Phase I Environmental Site Assessment, Colfax Elementary School, 11724 Addison Street, Los Angeles, California, January 21, 2016.

APPENDIX B BORING LOGS

	MAJOR DIVI	SIONS		TYPICAL NAMES
	GRAVELS	CLEAN GRAVELS WITH LITTLE OR	GW	WELL GRADED GRAVELS, GRAVEL-SAND MIXTURES
	MORE THAN HALF	NO FINES	GP 00	POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES
SOILS	COARSE FRACTION IS LARGER THAN	GRAVELS WITH	GM 3	SILTY GRAVELS, POORLY GRADED GRAVEL-SAND-SILT MIXTURES
GRAINED SOILS Half > #200 sieve	NO. 4 SIEVE	OVER 15% FINES	GC 9	CLAYEY GRAVELS, POORLY GRADED GRAVEL-SAND-CLAY MIXTURES
	SANDS	CLEAN SANDS WITH LITTLE	sw p	WELL GRADED SANDS, GRAVELLY SANDS
COARSE More than	MORE THAN HALF	OR NO FINES	SP :::	POORLY GRADED SANDS, GRAVELLY SANDS
	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE	SANDS WITH	SM .	SILTY SANDS, POOORLY GRADED SAND-SILT MIXTURES
	NO. 4 SIEVE	OVER 15% FINES	sc .	CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURES
		ID CLAYS	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS, OR CLAYEY SILTS WITH SLIGHT PLASTICITY
JILS sieve	LIQUID LIMIT I		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
FINE GRAINED SOILS More than Half < #200 sieve			OL	ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
E GRAII than Hal			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FIN More 1	0.2.0	ID CLAYS EATER THAN 50	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
			OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	HIGHLY ORGAN	NIC SOILS	Pt 1/2 1/2	PEAT AND OTHER HIGHLY ORGANIC SOILS

SYMBOLS AND NOTES

= Sample Interval (Glass Jar)

= Sample Interval (Sleeve/Ring)

= Water Level at Time of Drilling

= Water Level After Drilling

PID

USCS = Unified Soil Classification System = Photoionization Detector

ppm = Parts Per Million

CLAST SIZE (Field Classification)

Gravel = >0.2 inches Sand = 0.003 - 0.2 inches Silt = <0.003 (not plastic)

Clay = <0.003 (plastic)

DENSITY DESCRIPTORS (Sands)

4-10 blows per foot = Loose 10-30 blows per foot = Medium Dense

30-50 blows per foot = Dense >50 blows per foot = Very Dense **DESCRIPTORS**

Trace = 1% - 5%Some = 6% - 10%

With = 11% - 25% Clast Size + "y" = 26% - 40%

And = >40%

DENSITY DESCRIPTORS (Silts/Clays)

2-4 blows per foot = Soft

4-8 blows per foot = Medium Stiff

8-15 blows per foot = Stiff

15-30 blows per foot = Very Stiff

>30 blows per foot = Hard

BORING LOG EXPLANATION

PROJECT N PROJECT N LOCATION DRILLING N SAMPLING GROUND E TOP OF CA LOGGED B' REMARKS	AME	LAUSD 4 Addiso Hand Glas NA	Colfax E n Street, Auger ss Jar	Valley	Village,	BORING/WELL NUMBER PER1 DOI SSI DATE DRILLED 10/27/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION
DEPTH (ft. BGL) BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -		3.0 PER1-1.5 PER1-0.5		SM		@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @Continued a survival amounts of organic material (rootlets, wood chips, leaves, etc.) @Continued a survival amounts of organic material (rootlets, wood chips, leaves, etc.)
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18 1						Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJECT N	11724_Add IETHOD METHOD LEVATION SINGNA YKCH	SD Collison Stand Aug Glass	lfax Ele treet, Va ger Jar	mentary alley Vil	/ Schoo	BORING/WELL NUMBER PER1-S I SSI DATE DRILLED 12/21/2018 CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION , Inc.
DEPTH (ft. BGL) BLOW COUNTS	RECOVERY (inches) SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -	PER4-S-0.5			SM		@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @0.5': SILT: light brown, soft, moist, no staining, no odor
- 2 -	PER1-S-1.5					Total Depth = 1.5 feet bgs Total Sampled Depth = 1.5 feet bgs No groundwater encountered Backfilled boring with ~6 -inches of hydrated bentonite (bottom) and capped with native material
OGS.GPJ LAEWNNO1.GDT 1/7/19 2.						
GE_SBL_LAUSD COLFAX SSI BORING_LOGS.GPJ_LAEWNN01.GDT_1/19 C						

PRO LOC DRIL SAM GRO TOP LOG	DJECT NO DJECT NO DJECT NO DLING M IPLING M DUND EL DUND EL DOF CAS GGED BY JARKS	AME 117 ETHOD METHOD EVATION SING	724 Addis Han O GI ON NA AG/RAL	D Co son S d Au lass	olfax El Street, ' Iger Jar	Valley	Village,	BORING/WELL NUMBER PER1-SE OOI SSI DATE DRILLED 11/3/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION Onmental. Step-out boring location located approximately 5 feet southeast of PER1.
DEPTH (ft. BGL)	BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
1			PER1-SE-0.5	£)			9 (1 / 2 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 1	_		PER1-SE-1.5	(3)		SM		@1.5: Silty SAND: brown, loose, moist, fine-grained, rootlets present, no staining, no odor
9/18			PER1-SE-3.0	(\$				Total Depth = 3.0 feet bgs
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18	-							Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJE LOCAT DRILLI SAMPI	ECT NATION ING ME LING M ND ELE F CASI	ME 117 ETHOD ETHOD EVATIO NG KC	Z4 Addisc Hand Gland N NA	O Co on St d Aug ass	lfax Ele treet, V ger Jar	mentar alley Vi	y Schoo	BORING/WELL NUMBER PER1-SE2 DI SSI DATE DRILLED 12/21/2018 CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION g, Inc.
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -			PER1-SE2-0.5	\$ P		SM	0.19/00 0.19/0	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) ———————————————————————————————————
			PER1-SE2-1.5	\$3.				Total Depth = 1.5 feet bgs
- 2 -								Total Sampled Depth = 1.5 feet bgs No groundwater encountered Backfilled boring with ~6 -inches of hydrated bentonite (bottom) and capped with native material
0GS.GPJ LAEWNN01.GDT 177/19								
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_1/19 1 5 1 1 1 1 1 1								

PRO LOC. DRIL SAM GRO TOP LOG	JECT NI JECT NA ATION LING M PLING M JUND EL OF CAS GED BY ARKS	AME 117 ETHOD METHOD EVATIO	24 Addis Han O GI NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley	Village,	BORING/WELL NUMBER PER1-SW DOI SSI DATE DRILLED 11/3/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION Inmental. Step-out boring location located approximately 5 feet southwest of PER1.
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1			PER1-SW-0.5	£3)				@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 2			PER1-SW-1.5	(3)		SM		@1.5: Silty SAND: brown, loose, moist, fine-grained, rootlets present, no staining, no odor
/9/18 - 3	_		PER1-SW-3.0	E				Total Depth = 3.0 feet bgs
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18								Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJECT N		D Colfax Ele son Street, V nd Auger Blass Jar	ementary Schoo /alley Village, C	BORING/WELL NUMBER PER1-SW2 OI SSI DATE DRILLED 12/21/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION g, Inc.
DEPTH (ft. BGL) BLOW COUNTS	RECOVERY (inches) SAMPLE ID.	EXTENT PID (ppm)	U.S.C.S. GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	N2-1.0 PER1-SW2-0.5		SM	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @0.5': SILT: light brown, soft, moist, no staining, no odor
- 1 -	PER1-SW2-1.0			Total Depth = 1.0 feet bgs Total Sampled Depth = 1.0 feet bgs Hand auger refusal at 1.0 feet bgs due to tree roots No groundwater encountered Backfilled boring with ~6 -inches of hydrated bentonite (bottom) and capped with native material
S.GPJ LAEWNN01.GDT 1/7/19 C.				
GE_SBL_LAUSD COLFAX SSI BORING_LOGS.GPJ_LAEWNN01.GDT_1/19				

PROJ LOCA DRILI SAMF GROU TOP (JECT NATION LING MI PLING M UND EL OF CAS GED BY	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han O GI ON NA AG/RAL	D Co son S d Au lass	olfax El Street, Iger Jar	Valley	Village,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
			PER2-0.5	£)			10 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 1 -			PER2-1.5	£3		SM		@1.5: Silty SAND: brown, loose, moist, fine-grained, no staining, no odor
3 -	_		PER2-3.0	£)				Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18								No groundwater encountered Backfilled boring with native material

PRO	OJECT N	UMBER	1164	10.00	08			BORING/WELL NUMBER PER3			
PRO	OJECT N	AME	LAUS	O Co	lfax El	ementa	ary Sch	DI SSI DATE DRILLED 10/27/2018			
LO	CATION	117	24 Addis	on S	Street,	Valley \	Village,	CA CASING TYPE/DIAMETER NA / NA			
DRI	ILLING M	ETHOD						SCREEN TYPE/SLOT NA / NA			
	MPLING I							GRAVEL PACK TYPE NA			
	OUND EL							GROUT TYPE/QUANTITY NA / NA			
	P OF CAS		NA O/DAI					DEPTH TO WATER			
	GGED BY MARKS		G/RAL	otod	by Str	ongorm		ground water elevation			
IXL	VIAINIO		ig compi		Dy Oil	T	LIIVII	minental			
DEPTH	BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION			
			PER3-0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)			
- 1			PER3-1.5			SM		@1.5: Silty SAND: very dark grayish brown, loose, moist, fine-grained, rootlets present, no staining, no odor			
9/18	_		PER3-3.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Total Depth = 3.0 feet bgs			
SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18								Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material			
GE_SBL_LAUSD COLFAX SSI BORING											

F L S C T L L	PROJ LOCA DRILL SAMF GROU TOP (ECT NATION LING MIPLING IN	117 ETHOD METHOI EVATIONSING	LAUS 724 Addis Han D Gi DN NA AG/RAL	D Co son S d Au lass	olfax El Street, Iger Jar	Valley \	Village,	BORING/WELL NUMBER
- - - - - -	DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
				PER4-0.5	8P3			9(10/90 \0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
	1 -			PER4-1.5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		SP		@1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
1/18 1	3 -			PER4-3.0	8P.				Tatal Double 0.0 for the sec
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18	4 -								Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SB	- 5 —								

PROJ LOCA DRILL SAMF GROU TOP (LOGG	IECT NATION LING MI PLING N	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han O G ON NA AG/RAL	D Co son S d Au lass	olfax E Street, Iger Jar	Valley	Village,	BORING/WELL NUMBER PER5 DOOI SSI DATE DRILLED 10/27/2018 CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION Onmental
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
			PER5-0.5	£)			2 1 a/ 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 1 -			PER5-1.5	E)		SM		@1.5: Silty SAND: dark grayish brown, loose, moist, fine-grained, no staining, no odor
91/8/1			PER5-3.0	£)				Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs
3								No groundwater encountered Backfilled boring with native material
5 5								

PROJ LOCA DRILL SAMF GROU	TIECT NATION LING MI PLING M JND EL OF CAS	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han O GI ON NA AG/RAL	D Co son S d Au lass	olfax El Street, ' Iger Jar	Valley	Village,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
			PER6-0.5	£)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 1 -			PER6-1.5			SM		@1.5: Silty SAND: dark grayish brown, loose, moist, fine-grained, no staining, no odor
3 -			PER6-3.0	(3				Total Depth = 3.0 feet bgs
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18								Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJ LOCA DRILL SAMI GROU TOP	JECT NATION LING MI PLING M UND EL OF CAS GED BY	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han O GI ON NA AG/RAL	D Co son S d Au lass	olfax El Street, Iger Jar	Valley	Village,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
			PER7-0.5	£)			1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 1 -			PER7-1.5	£3		SM		@1.5: Silty SAND: brown, loose, moist, fine-grained, no staining, no odor
3 3			PER7-3.0	E				Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18	-							No groundwater encountered Backfilled boring with native material

PRO LOC DRII SAM GRO TOP LOG	JECT NO JECT N	AME 117 ETHOD METHOD EVATION SING SA	LAUSI 724 Addis Han D GI DN NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley \	/illage,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
			PER8-0.5	ans.			9(10/20, 1) 0 0 0 0 2/ 0 10/00	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 1	_		PER8-1.5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		SP		@1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
9/18			PER8-3.0	£3				Total Denth = 3.0 feet has
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18	_							Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PI LC DI SA GI TC	ROJI OCA RILL AMP ROU OP C	ECT NATION LING MILLING N	117 ETHOD METHOI EVATIO SING S/	LAUS 724 Addis Han D GI DN NA AG/RAL	D Co son S d Au lass	olfax El Street, Iger Jar	Valley \	Village,	BORING/WELL NUMBER PER9 OOI SSI DATE DRILLED 10/27/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION
DEPTH	(ft. BGL)	BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
				PER9-0.5	m			**************************************	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
	1 -			PER9-1.5	~m		SP		@1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
1/18	3 -			PER9-3.0	8P2				Tatal Double - 0.0 for the re-
LOGS.GPJ LAEWNN01.GDT 11/9	4 -								Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SB	5 —								

P L D S G T	ROJ OCA RILL AMP ROU OP O	ECT NATION LING MICLING N	117 ETHOD METHOD EVATIONS	LAUS 724 Addis Han O GI ON NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley \	√illage,	BORING/WELL NUMBER
DEDTH	(ft. BGL)	BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	1 -			PER10-1.5 PER10-0.5			SP	\$\frac{1}{2}\ldots\frac	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL LAUSD COLFAX SSI BORING LOGS,GPJ LAEWNN01.GDT 11/9/18	3 -			PER10-3.0					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJ LOCA DRILL SAME GROU TOP (LOGO	ECT NATION LING MI PLING M JND EL OF CAS	AME 117 ETHOD METHOD EVATION SING SA	LAUSI 724 Addis Hand O GI ON NA AG/RAL	D Co on S d Au ass	olfax El Street, ' Iger Jar	Valley \	/illage,	CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -			PER11-0.5	£)			*(1 of /6) (1 of /6)	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 2 -			PER11-1.5			SP		@1.5: Poorly-graded SAND: dark grayish brown, loose, moist, fine-grained, with silt, no staining, no odor
- 2 -			PER11-3.0	E				
- 3 -			a.					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
	PROJ LOCA DRILLI SAMF GROU LOGG REMA - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	PROJECT NO LOCATION DRILLING MI SAMPLING MI GROUND ELI TOP OF CAS LOGGED BY REMARKS MOTE AND	PROJECT NAME LOCATION 117 DRILLING METHOD SAMPLING METHOD GROUND ELEVATIO TOP OF CASING LOGGED BY 80 Boril (HE BGT) (HE	PROJECT NAME LAUSI LOCATION 11724 Addis DRILLING METHOD GROUND ELEVATION. TOP OF CASING NOON SAG/RAL BOOTING COMPT REMARKS BOOTING (iuches) 1 - 2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	PROJECT NAME LAUSD CO. LOCATION 11724 Addison S. PROJECT NAME LOCATION 211724 Addison S. GROUND ELEVATION TOP OF CASING ALLOGGED BY SAG/RAL (inches) (inc	PROJECT NAME LOCATION 11724 Addison Street, DRILLING METHOD SAMPLING METHOD GROUND ELEVATION TOP OF CASING LOGGED BY REMARKS MOTOR MICHORIA 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	PROJECT NAME LOCATION 11724 Addison Street, Valley V Hand Auger Glass Jar GROUND ELEVATION TOP OF CASING LOGGED BY REMARKS 1000 11724 Addison Street, Valley V Hand Auger Glass Jar Glass	PROJECT NAME LOCATION 11724 Addison Street, Valley Village, DRILLING METHOD SAMPLING METHOD GROUND ELEVATION TOP OF CASING REMARKS Boring completed by Strongarm Environ (10999) SAG/RAL REMARKS BORING STRONG REMARKS BORING COMPLET ON STRONG STRO

PROJECT N PROJECT N LOCATION DRILLING M SAMPLING I GROUND EL TOP OF CAS LOGGED BY REMARKS	AME L 11724 F ETHOD _ METHOD EVATION SING _ N SAG/R	Addison Hand A Glass A	Street, Street, uger Jar	Valley \	/illage,	BORING/WELL NUMBER
DEPTH (ft. BGL) BLOW COUNTS	RECOVERY (inches)	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -		PER12-3.0 PER12-1.5 PER12-0.5 / DUP-2 (\$\frac{2}{3}\$ (\$\frac{2}{3}\$		SP	** 10/4 *** ********************************	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWINOT.GDT 11/9/18 1 2 1 1 1 1						Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

/ NA / NA is feet northeast of PER12.
ION
al (rootlets, wood chips, leaves,

PROJECT N PROJECT N LOCATION DRILLING M SAMPLING I GROUND EL TOP OF CAS LOGGED BY REMARKS	AME LAU 11724 Add IETHOD Ha METHOD C LEVATION SING NA (SAG/RAL	ison Street and Auger Glass Jar	Valley Village	BORING/WELL NUMBER PER12-SE hool SSI DATE DRILLED 11/3/2018 e, CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION ronmental. Step-out boring location located approximately 5 feet southeast of PER12.
DEPTH (ft. BGL) BLOW COUNTS	RECOVERY (inches) SAMPLE ID.	EXTENT PID (ppm)	U.S.C.S. GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -	PER12-SE-3.0 PER12-SE-1.5 PER12-SE-0.5		SP	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18 1	PER			Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PR LC DF SA GF TC LC	REMARKS Boring completed by Strongarm Environmental								CA
DEPTH	(ft. BGL)	COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1	1 -			PER13-1.5 PER13-0.5	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		SP	\$\langle \langle \lang	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: dark grayish brown, loose, moist, fine-grained, with silt, no staining, no odor
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18	3 -			PER13-3.0					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

	PROJ LOCA DRILL SAME GROU TOP (ATION LING MI PLING M JND EL OF CAS	117 ETHOD METHOD EVATIONSING	LAUS 724 Addis Han D GI DN NA AG/RAL	D Co son S d Au lass	olfax El Street, ' Iger Jar	Valley \	/illage,	BORING/WELL NUMBER
	DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	- 1 -			PER14-0.5	~~~			*(10/00 ()	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
	- 2 -			PER14-1.5			SP		@1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
81	- 2 -			PER14-3.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18	- 3 -			Δ.					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJECT N PROJECT N LOCATION DRILLING N SAMPLING GROUND EI TOP OF CAL LOGGED BY REMARKS	AME LAU 11724 Ad IETHOD H METHOD LEVATION SING NA (SAG/RA Boring con	dison Si and Aug Glass J	lfax Eleme treet, Vall ger Jar	ey Village	BORING/WELL NUMBER PER14-NE DOOI SSI DATE DRILLED 11/3/2018 CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION DONIMENTAL Step-out boring location located approximately 5 feet northeast of PER14.
DEPTH (ft. BGL) BLOW COUNTS	RECOVERY (inches)	EXTENT	PID (ppm)	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -	PER14-NE-3 0 PER14-NE-1 5 PER14-NE-0 5		S	P	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18 1					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJ LOCA DRILL SAMI GROU TOP	JECT NI JECT NA ATION LING MI PLING M UND EL OF CAS GED BY ARKS	AME 117 ETHOD METHOD EVATION SING SA	LAUSI '24 Addis Hand O GI ON NA AG/RAL	D Co on S d Au ass	olfax El Street, ' Iger Jar	Valley \	/illage,	BORING/WELL NUMBER PER14-SE ool SSI DATE DRILLED 11/3/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION onmental. Step-out boring location located approximately 5 feet southeast of PER14.
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -			3.0 PER14-SE-1.5 PER14-SE-0.5			SP	*(14/% ()	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18			PER14-SE-3.(Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SBL_LAU 								

PROD LOCA DRILL SAMI GRO TOP LOGA	JECT NI JECT NA ATION LING MI PLING M UND EL OF CAS GED BY ARKS	117 ETHOD METHOD EVATIO SING SA	LAUSI 24 Addis Hand Gl N NA NA	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley \	√illage,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1			PER15-0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			9 10/9	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 2	-		PER15-1.5			SP		@1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
81_ 2			PER15-3.0	es.				
SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/16	_		Δ.					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18	-		He had a second and a second a					Total Sampled Depth = 3.0 feet bgs No groundwater encountered

PROJ LOCA DRILL SAMP GROL TOP O	ECT NATION LING MI PLING M JND EL OF CAS	117 ETHOD METHOD EVATIONS SING	LAUSI 724 Addis Han D GI DN NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley \	√illage,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -			PER16-1.5 PER16-0.5	3		SP	**************************************	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18 1			PER16-3.0					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SBL_LAUSD COLFAX SS 								

	PROJ LOCA DRILI SAMF GROU	ATION LING MI PLING M JND EL OF CAS	117 ETHOD METHOI EVATIO SING	LAUS 724 Addis Han D GI DN NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley \	/illage,	BORING/WELL NUMBER
	DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	- 1 -			PER17-0.5	F)			**************************************	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
	- 2 -			PER17-1.5	E		SP		@1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
8	2			PER17-3.0	***				
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18	3 -			<u>a</u>					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SB	- 5 -	-							

PROJ LOCA DRILI SAMF GROU	ATION LING MI PLING M JND EL OF CAS	117 ETHOD METHOD EVATIONS	LAUSI 724 Addis Han D GI DN NA AG/RAL	D Co son S d Au ass	olfax El Street, Iger Jar	Valley \	Village,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -			PER18-1.5 PER18-0.5			SP	\$\frac{1}{2} \frac{1}{2} \frac	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
11/9/18			PER18-3.0	~~				Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18								No groundwater encountered Backfilled boring with native material

PROD LOCA DRILL SAM GRO TOP LOG	JECT NATION LING MI PLING M UND EL OF CAS GED BY	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han O GI ON NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley \	/illage,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1			.5 PER19-0.5				**************************************	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 2			PER19-3.0 PER19-1.5			SP		@1.5: Poorly-graded SAND: dark grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18	_		PER					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SBL_LAUSD COLFAX SSI BORI								

PROJECT PROJECT LOCATION DRILLING SAMPLING GROUND E TOP OF CA LOGGED E REMARKS	NAME 117 METHOD METHOI ELEVATION ASING BY SA	LAUS 724 Addis Han D Gi DN NA AG/RAL	D Co son S d Au lass	olfax El Street, ' Iger Jar	Valley \	Village,	BORING/WELL NUMBER
DEPTH (ft. BGL) BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -		PER20-3.0 PER20-1.5 PER20-0.5			SP	*** 0.19/se	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, wood fragments present, no staining, no odor
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18							Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PR LO DR SA GR TO LO	OJECT CATION ILLING	N _1 METHO METHO ELEVAT ASING BY _	LAUS 1724 Addis D Har DD G ION NA SAG/RAL	SD Co son S nd Au lass	olfax El Street, Iger Jar	Valley \	Village,	BORING/WELL NUMBER
DEPTH	(ff. BGL) BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1			PER21-1.5 PER21-0.5			SP	\$\langle \cdot \cd	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18			PER21-3.0					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJECT N PROJECT N LOCATION DRILLING N SAMPLING GROUND EL TOP OF CAS LOGGED BY REMARKS	AME 11724 LETHOD METHOD LEVATION SING N SAG/	AUSD (Addison Hand A Glas NA RAL	Colfax El Street, Auger s Jar	Valley \	Village,	BORING/WELL NUMBER PER22 DOI SSI DATE DRILLED 10/27/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION
DEPTH (ft. BGL) BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -		PER22-3.0 PER22-1.5 PER22-0.5 / DUP-3	n -	SM		@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @Continued a survival amounts of organic material (rootlets, wood chips, leaves, etc.) @Continued a survival amounts of organic material (rootlets, wood chips, leaves, etc.)
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18 1						Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

	PROJ LOCA DRILL SAMF GROU TOP (ECT NATION LING MI PLING M JND EL OF CAS GED BY	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han O GI ON NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley	Village,	BORING/WELL NUMBER PER22-NE DOI SSI DATE DRILLED 11/3/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION DIAMETER OF THE PER22-NE DATE DRILLED 11/3/2018 NA / NA DEPTH TO WATER GROUND WATER ELEVATION DIAMETER OF THE PER22-NE DATE DRILLED 11/3/2018 D
	DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	- 1 -			E-3.0 PER22-NE-1.5 PER22-NE-0.5			SM		@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @ 1.5: Silty SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18	- 3 -			PER22-NE-3.					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJ LOCA DRILL SAMI GROU TOP	JECT NA ATION LING MI PLING N	AME 117 ETHOD METHOD EVATIO	24 Addis Han O GI ON NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley	Village,	BORING/WELL NUMBER PER22-NW DOI SSI DATE DRILLED 11/3/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION Inmental. Step-out boring location located approximately 5 feet northwest of PER22.
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
			PER22-NW-0.5	~~~			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 1 -			PER22-NW-1.5			SM		@1.5: Silty SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
9/18			PER22-NW-3.0					Total Depth = 3.0 feet bgs
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18			ů.					Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PRO LOC DRIL SAM GRO TOP LOG	JECT NATION LLING M IPLING IN DUND EL OF CAS	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han D GI ON NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley	Village,	BORING/WELL NUMBER PER23 DOI SSI DATE DRILLED 10/27/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION
DEPTH (ff. BGL)	BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1	_		5 PER23-0.5	% The state of the				@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 2	-		PER23-3.0 PER23-1.5			SM		@1.5: Silty SAND: brown, loose, moist, fine-grained, no staining, no odor
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWINN01.GDT 11/9/18	_		PER2					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SBL_LAUSD COLFAX SSI B								

PROJ LOCA DRILL SAMP GROL TOP O	ECT NATION LING MI PLING M JND EL OF CAS GED BY	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han O GI ON NA AG/RAL	D Co son S d Au lass	olfax El Street, ' Iger Jar	Valley	Village,	BORING/WELL NUMBER PER24 DOI SSI DATE DRILLED 10/27/2018 CA CASING TYPE/DIAMETER NA / NA SCREEN TYPE/SLOT NA / NA GRAVEL PACK TYPE NA GROUT TYPE/QUANTITY NA / NA DEPTH TO WATER GROUND WATER ELEVATION
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -			PER24-0.5	£)			**************************************	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)
- 2 -			PER24-1.5			SM		@1.5: Silty SAND: dark grayish brown, loose, moist, fine-grained, no staining, no odor
- 3 -	-		PER24-3.0	£)				Total Depth = 3.0 feet bgs
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18								Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJEC LOCATIO DRILLING SAMPLIN	ON11 G METHOD NG METHO D ELEVATIO CASING D BYS	LAUS 724 Addis Han D Gi DN NA AG/RAL	D Co son S d Aug ass J	lfax Ele treet, \ ger Jar	/alley \	/illage,	BORING/WELL NUMBER
DEPTH (ft. BGL)	COUNTS RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -		PER25-3.0 PER25-1.5 PER25-0.5			SP	**(14/% 1)** **** **** **** *** *** *** *** ***	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ_LAEWNN01.GDT_11/9/18		PEF					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJE LOCA DRILL SAMP GROUTOP O	ECT NATION LING MI LING M JND EL OF CAS GED BY	117 ETHOD METHOD EVATIONS	LAUSI 724 Addis Han D GI DN NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley \	/illage,	BORING/WELL NUMBER
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -			PER26-1.5 PER26-0.5			SP	2(10/20) 2000 2000 2000 2000 2000 2000 2000	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18			PER26-3.0					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material
GE_SBL_LAUSD.CC								

PROJECT IN PROJECT IN LOCATION DRILLING IN SAMPLING GROUND E TOP OF CALOGGED B REMARKS	IAME L 11724 IETHOD LEVATION SING N Y SAG/	Addison Hand A Glas NA RAL	Colfax El Street, Auger s Jar	Valley \	/illage,	BORING/WELL NUMBER
DEPTH (ft. BGL) BLOW COUNTS	RECOVERY (inches)	SAMPLE ID.	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
- 1 -		PER27-1.5 PER27-0.5	ny	SP	**************************************	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: grayish brown, loose, moist, fine-grained, no staining, no odor
81/8		PER27-3.0	n,			Total Denth = 3.0 feet has
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18						Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

	PROJ LOCA DRILLI SAME GROU	ECT NATION LING MI PLING M JND EL OF CAS	117 ETHOD METHOD EVATIONS	LAUS 724 Addis Han D GI DN NA AG/RAL	D Co son S d Au ass	olfax El Street, ' Iger Jar	Valley \	/illage,	BORING/WELL NUMBER
	DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	- 1 -			8.0 PER28-1.5 PER28-0.5			SP	**************************************	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.) @1.5: Poorly-graded SAND: light grayish brown, loose, moist, fine-grained, no staining, no odor
GE_SBL_LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18	- 3 -			PER28-3.0					Total Depth = 3.0 feet bgs Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material

PROJ LOCA DRILI SAMF GROU	TIECT NATION LING MI PLING M JND EL OF CAS	AME 117 ETHOD METHOD EVATION SING SA	724 Addis Han O GI ON NA AG/RAL	D Co on S d Au ass	olfax El Street, ' Iger Jar	Valley	Village,	BORING/WELL NUMBER				
DEPTH (ft. BGL)	BLOW	RECOVERY (inches)	SAMPLE ID.	EXTENT	PID (ppm)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION				
- 1 -			PER29-0.5	\$\frac{1}{2}			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	@Surface: Top soil, varying amounts of organic material (rootlets, wood chips, leaves, etc.)				
- 2 -	PER29-1.5							@1.5: Silty SAND: grayish brown, loose, moist, fine-grained, no staining, no odor				
3 -			PER29-3.0					Total Depth = 3.0 feet bgs				
GE_SBL LAUSD COLFAX SSI BORING LOGS.GPJ LAEWNN01.GDT 11/9/18								Total Sampled Depth = 3.0 feet bgs No groundwater encountered Backfilled boring with native material				

APPENDIX C PHOTOGRAPHIC LOG

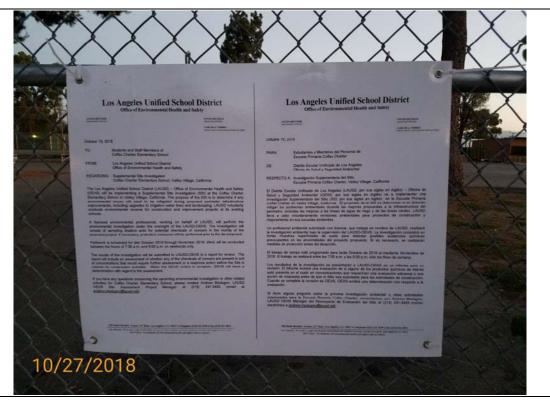
PHOTOGRAPHIC LOG

10/27/18, 11/3/18, and 12/21/18

Client Name:

Los Angeles Unified School District

Site Location: Colfax Elementary School, 11724 Addison Street, Valley Village, California Project No. 11640.008


Photo No. 1

View Direction of Photo:

North

Description:

Poster-board sized field notification posted along the southern boundary fence of the Site.

Photo No. 2

View Direction of Photo:

North

Description:

Geophysical survey at sample location PER29 to determine if the location was in conflict with underground utilities.

PHOTOGRAPHIC LOG

10/27/18, 11/3/18, and 12/21/18

Client Name:

Los Angeles Unified School District

Site Location: Colfax Elementary School, 11724 Addison Street, Valley Village, California Project No. 11640.008

Photo No. 3

View Direction of Photo:

North

Description:

Soil boring advancement using a hand auger at sample location PER3.

Photo No. 4

View Direction of Photo:

North

Description:

Soil from discrete depths was placed into 8-ounce glass jars for laboratory analysis.

PHOTOGRAPHIC LOG

10/27/18, 11/3/18, and 12/21/18

Client Name:

Los Angeles Unified School District

Site Location: Colfax Elementary School, 11724 Addison Street, Valley Village, California Project No. 11640.008

Photo No. 5

View Direction of Photo:

Southwest

Description:

Step-out soil boring location PER1-S is located approximately 5 feet from a building.

Photo No. 6

View Direction of Photo:

Northwest

Description:

Large trees are present within the area of recommended OCP-impacted soil removal.

APPENDIX D LABORATORY ANALYTICAL REPORTS

November 09, 2018

Ross Surrency Leighton Consulting, Inc. 17781 Cowan Street

Irvine, CA 92614 Tel: (949) 250-1421 Fax:(949) 757-7230 ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

Re: ATL Work Order Number: 1804036

Client Reference: LAUSD- Colfax ES, 11640.008

Enclosed are the results for sample(s) received on October 29, 2018 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PER1-0.5	1804036-01	Soil	10/27/18 7:38	10/29/18 10:48
PER1-1.5	1804036-02	Soil	10/27/18 7:39	10/29/18 10:48
PER2-0.5	1804036-04	Soil	10/27/18 7:45	10/29/18 10:48
PER3-0.5	1804036-07	Soil	10/27/18 7:51	10/29/18 10:48
DUP-1	1804036-10	Soil	10/27/18 7:40	10/29/18 10:48
PER4-0.5	1804036-11	Soil	10/27/18 8:05	10/29/18 10:48
PER5-0.5	1804036-14	Soil	10/27/18 8:18	10/29/18 10:48
PER6-0.5	1804036-17	Soil	10/27/18 8:27	10/29/18 10:48
PER7-0.5	1804036-20	Soil	10/27/18 8:37	10/29/18 10:48
PER8-0.5	1804036-23	Soil	10/27/18 8:45	10/29/18 10:48
PER9-0.5	1804036-26	Soil	10/27/18 8:53	10/29/18 10:48
PER10-0.5	1804036-29	Soil	10/27/18 9:01	10/29/18 10:48
PER11-0.5	1804036-32	Soil	10/27/18 9:26	10/29/18 10:48
PER12-0.5	1804036-35	Soil	10/27/18 9:35	10/29/18 10:48
PER12-1.5	1804036-36	Soil	10/27/18 9:37	10/29/18 10:48
DUP-2	1804036-38	Soil	10/27/18 9:36	10/29/18 10:48
PER13-0.5	1804036-39	Soil	10/27/18 10:11	10/29/18 10:48
PER14-0.5	1804036-42	Soil	10/27/18 10:17	10/29/18 10:48
PER14-1.5	1804036-43	Soil	10/27/18 10:19	10/29/18 10:48
PER14-3.0	1804036-44	Soil	10/27/18 10:20	10/29/18 10:48
PER15-0.5	1804036-45	Soil	10/27/18 10:24	10/29/18 10:48
PER16-0.5	1804036-48	Soil	10/27/18 10:51	10/29/18 10:48
PER17-0.5	1804036-51	Soil	10/27/18 10:57	10/29/18 10:48
PER18-0.5	1804036-54	Soil	10/27/18 11:04	10/29/18 10:48
PER19-0.5	1804036-57	Soil	10/27/18 11:10	10/29/18 10:48
PER20-0.5	1804036-60	Soil	10/27/18 11:15	10/29/18 10:48
PER21-0.5	1804036-63	Soil	10/27/18 11:23	10/29/18 10:48
DUP-3	1804036-66	Soil	10/27/18 11:35	10/29/18 10:48
PER22-0.5	1804036-67	Soil	10/27/18 11:33	10/29/18 10:48
PER22-1.5	1804036-68	Soil	10/27/18 11:36	10/29/18 10:48
PER23-0.5	1804036-70	Soil	10/27/18 11:41	10/29/18 10:48
PER24-0.5	1804036-73	Soil	10/27/18 11:48	10/29/18 10:48
PER25-0.5	1804036-76	Soil	10/27/18 12:34	10/29/18 10:48
PER26-0.5	1804036-79	Soil	10/27/18 12:41	10/29/18 10:48
PER27-0.5	1804036-82	Soil	10/27/18 12:46	10/29/18 10:48
PER28-0.5	1804036-85	Soil	10/27/18 12:52	10/29/18 10:48
PER29-0.5	1804036-88	Soil	10/27/18 12:59	10/29/18 10:48

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency

Irvine, CA 92614 Reported: 11/09/2018

EB-1 1804036-91 Water 10/27/18 9:50 10/29/18 10:48

CASE NARRATIVE

Results were J-flagged. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER1-0.5 Lab ID: 1804036-01

Total Metals by ICP-AES EPA 6010B Analyst: GO Result POL MDL Date/Time (mg/kg) (mg/kg) Dilution Batch Prepared Analyzed Notes Analyte (mg/kg) 4.0 1.0 0.18 B8J0805 10/30/2018 10/31/18 11:12 Lead 1 Analyst: PT **Total Metals by ICP-MS EPA 6020** MDL Date/Time Result **PQL** Prepared Analyzed Analyte (mg/kg) (mg/kg) Dilution Batch Notes (mg/kg) Arsenic 2.0 1.0 0.04 20 B8K0006 10/31/2018 11/01/18 12:20 D1 Mercury by AA (Cold Vapor) EPA 7471A **Analyst: KEK** PQL MDL Date/Time Result Analyte (mg/kg) (mg/kg) (mg/kg) Dilution Batch Prepared Analyzed Notes Mercury 0.05 0.10 0.006 1 B8J0808 10/30/2018 11/01/18 11:31 J Diesel Range Organics by EPA 8015B Analyst: CR POL MDL Date/Time Result Analyte (mg/kg) (mg/kg) (mg/kg) Dilution Batch Prepared Analyzed Notes DRO 1.0 10/31/2018 10/31/18 21:44 1.5 1.0 1 B8J0859 ORO 1.0 B8J0859 10/31/2018 10/31/18 21:44 4.3 1.0 1 Organochlorine Pesticides by EPA 8081 Analyst: CO/ Result POL MDL Date/Time Notes Analyte Dilution Batch Analyzed (ug/kg) (ug/kg) (ug/kg) Prepared 4,4'-DDD 0.70 10 B8J0820 10/30/2018 10/31/18 20:28 J 1.6 20 alpha-Chlordane 1.2 10 B8J0820 10/30/2018 10 10 10/31/18 20:28 57 B8J0820 Chlordane [2C] 85 11 10 10/30/2018 10/31/18 20:28 J 93 1.3 10 B8J0820 10/30/2018 10/31/18 20:28 Dieldrin 20 gamma-Chlordane 4.9 10 0.70 10 B8J0820 10/30/2018 10/31/18 20:28 J Heptachlor epoxide [2C] 4.4 10 0.89 10 B8J0820 10/30/2018 10/31/18 20:28 J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Reported : \ 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER2-0.5

Total Metals by ICP-AES EI	PA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.8	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:16	
Total Metals by ICP-MS EPA	A 6020							Analyst: P
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	6.9	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 13:01	D1
Mercury by AA (Cold Vapor) EPA 7471A							Analyst: KEI
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:41	J
Diesel Range Organics by El	PA 8015B							Analyst: Cl
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	5.0	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:10	
ORO	8.1	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:10	
Organochlorine Pesticides b	y EPA 8081							Analyst: CO
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane	6.6	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 21:50	
Chlordane	63	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 21:50	
Dieldrin [2C]	33	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 21:50	
gamma-Chlordane [2C]	3.4	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 21:50	
Heptachlor epoxide	3.4	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 21:50	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER3-0.5

Total Metals by ICP-A	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	5.4	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:17	
Total Metals by ICP-I	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	6.0	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:25	D1
Mercury by AA (Cold	Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:42	J
Diesel Range Organic	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	2.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:27	
ORO	3.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:27	

Biesel Range Organies by Elift o	0130							rinaryst. Civ
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	2.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:27	
ORO	3.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:27	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID DUP-1

Total Metals by ICP-	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	0.63	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:19	J
Total Metals by ICP-	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	2.7	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:25	D1
Mercury by AA (Cold	l Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:44	J
Diesel Range Organic	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	2.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:18	
ORO	1.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:18	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER4-0.5

Total Metals by ICP-AES E	PA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	15	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:20	
Fotal Metals by ICP-MS EP	A 6020							Analyst: Pl
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	7.0	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:26	D1
Mercury by AA (Cold Vapor	r) EPA 7471A							Analyst: KEI
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:50	J
Diesel Range Organics by E	PA 8015B							Analyst: CI
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	4.4	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 22:52	
ORO	8.8	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 22:52	
Organochlorine Pesticides b	y EPA 8081							Analyst: CO
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDE [2C]	1.6	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:22	J
alpha-Chlordane	4.1	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 22:22	
Chlordane [2C]	49	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 22:22	
gamma-Chlordane	2.1	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:22	
Heptachlor epoxide [2C]	3.8	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 22:22	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER5-0.5

Total Metals by ICP-A	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	6.6	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:21	
Total Metals by ICP-l	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	4.2	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:29	D1
Mercury by AA (Cold	l Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.07	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:52	J
Diesel Range Organic	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	5.0	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 23:10	
ORO	9.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 23:10	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER6-0.5

Total Metals by ICP-A	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	1.6	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:22	
Total Metals by ICP-I	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	4.7	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 13:02	D1
Mercury by AA (Cold	Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.08	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:54	J
Diesel Range Organic	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	3.7	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:18	
ORO	9.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:18	

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	3.7	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:18	
ORO	9.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:18	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $\begin{array}{ccc} 17781 \ Cowan \ Street & Report \ To: \ Ross \ Surrency \\ Irvine \ , CA \ 92614 & Reported : \ 11/09/2018 \\ \end{array}$

DETECTION SUMMARY

Client Sample ID PER7-0.5

Fotal Metals by ICP-AES E	PA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	1.6	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 15:55	
Fotal Metals by ICP-MS EP	A 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	4.1	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:30	D1
Mercury by AA (Cold Vapor	r) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.07	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:56	J
Diesel Range Organics by E	PA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	3.0	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:35	
ORO	3.7	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:35	
Organochlorine Pesticides b	y EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane	0.21	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 22:53	
Chlordane [2C] gamma-Chlordane [2C]	3.3 0.27	8.5 1.0	1.1 0.07	1 1	B8J0820 B8J0820	10/30/2018 10/30/2018	10/30/18 22:53 10/30/18 22:53	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $\begin{array}{ccc} 17781 \ Cowan \ Street & Report \ To: \ Ross \ Surrency \\ Irvine \ , CA \ 92614 & Reported : \ 11/09/2018 \\ \end{array}$

DETECTION SUMMARY

Client Sample ID PER8-0.5

Total Metals by ICP-AES	S EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	9.4	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 15:56	
Total Metals by ICP-MS	EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	8.3	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:31	D1
Mercury by AA (Cold Va	por) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.07	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:58	J
Diesel Range Organics by	y EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	10	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 23:44	
ORO	27	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 23:44	
Organochlorine Pesticide	es by EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane	4.2	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 23:04	
Chlordane	40	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 23:04	
gamma-Chlordane	1.9	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:04	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER9-0.5

Fotal Metals by ICP-AES E	PA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	0.98	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 15:58	J
Total Metals by ICP-MS EP	PA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	5.7	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:32	D1
Mercury by AA (Cold Vapor	r) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.08	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:00	J
Diesel Range Organics by E	PA 8015B							Analyst: CI
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	2.0	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:35	
ORO	2.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:35	
Organochlorine Pesticides b	oy EPA 8081							Analyst: CO
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Heptachlor epoxide [2C]	0.13	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 23:14	J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER10-0.5

Total Metals by ICP-	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	0.71	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 15:59	J
Fotal Metals by ICP-	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	4.7	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:33	D1
Mercury by AA (Cold	l Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:01	J
Diesel Range Organio	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	3.8	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:00	
ORO	3.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:00	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER11-0.5

Total Metals by ICP-AES E	PA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	1.4	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:00	
Fotal Metals by ICP-MS EP	PA 6020							Analyst: Pl
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	6.2	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:34	D1
Mercury by AA (Cold Vapor	r) EPA 7471A							Analyst: KEk
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:03	J
Diesel Range Organics by E	PA 8015B							Analyst: CF
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	8.3 13	1.0 1.0	1.0 1.0	1	B8J0859 B8J0859	10/31/2018 10/31/2018	10/31/18 23:27 10/31/18 23:27	
Organochlorine Pesticides b		1.0		<u>.</u>	200000	10,51/2010	10,31,10 23.27	Analyst: CO
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Heptachlor epoxide [2C]	0.12	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 23:35	J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER12-0.5

Lab ID: 1804036-35

Total Metals by ICP-AES I	EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	18	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:02	
Total Metals by ICP-MS E	PA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	11	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:35	D1
Mercury by AA (Cold Vapo	or) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.10	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:05	J
Diesel Range Organics by l	EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	110	5.0	5.0	5	B8J0859	10/31/2018	11/01/18 00:54	
ORO	140	5.0	5.0	5	B8J0859	10/31/2018	11/01/18 00:54	
Organochlorine Pesticides	by EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-BHC delta-BHC [2C]	1.9 0.89	1.0 1.0	0.11 0.03	1	B8J0820 B8J0820	10/30/2018 10/30/2018	10/30/18 23:45 10/30/18 23:45	1

Client Sample ID PER12-1.5

Total Metals by ICP-MS EP	A 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	2.2	1.0	0.04	20	B8K0091	11/02/2018	11/04/18 14:49	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID DUP-2

Total Metals by ICP-AES	S EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	20	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:03	
Total Metals by ICP-MS	EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	12	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:35	D1
Mercury by AA (Cold Va	por) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:07	J
Diesel Range Organics by	y EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	220	5.0	5.0	5	B8J0859	10/31/2018	11/01/18 01:11	
ORO	240	5.0	5.0	5	B8J0859	10/31/2018	11/01/18 01:11	
Organochlorine Pesticide	s by EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDE	7.9	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:56	
Aldrin [2C] delta-BHC [2C]	1.1 2.0	1.0 1.0	0.04 0.03	1 1	B8J0820 B8J0820	10/30/2018 10/30/2018	10/30/18 23:56 10/30/18 23:56	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER13-0.5

Total Metals by ICP-AES	S EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	13	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:04	
Total Metals by ICP-MS	EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	10	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:36	D1
Mercury by AA (Cold Va	por) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.04	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:13	J
Diesel Range Organics by	y EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	24 40	1.0 1.0	1.0 1.0	1 1	B8J0859 B8J0859	10/31/2018 10/31/2018	11/01/18 00:19 11/01/18 00:19	
Organochlorine Pesticide	es by EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD [2C]	0.35	2.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:06	J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER14-0.5

Lab ID: 1804036-42

Total Metals by ICP-AES	EPA 6010B							Analyst: GC
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	14	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:05	
Total Metals by ICP-MS 1	EPA 6020							Analyst: Pl
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	12	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:39	D1
Mercury by AA (Cold Var	oor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.04	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:14	J
Diesel Range Organics by	EPA 8015B							Analyst: CF
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	13	1.0	1.0	1	B8J0859	10/31/2018	11/01/18 00:01	
ORO	23	1.0	1.0	1	B8J0859	10/31/2018	11/01/18 00:01	
Organochlorine Pesticides	s by EPA 8081							Analyst: CO
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane	0.79	1.0	0.12	1	B8J0820	10/30/2018	10/31/18 00:17	J
Chlordane [2C]	8.8	8.5	1.1	1	B8J0820	10/30/2018	10/31/18 00:17	
gamma-Chlordane	0.87	1.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:17	J

Client Sample ID PER14-1.5

Total Metals by ICP-MS EPA	A 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	13	1.0	0.04	20	B8K0091	11/02/2018	11/04/18 14:52	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan StreetReport To:Ross SurrencyIrvine, CA 92614Reported:11/09/2018

DETECTION SUMMARY

Client Sample ID PER14-3.0

Lab ID: 1804036-44

Total Metals by ICP-MS EPA 6020

Analyst: PT

Total Metals by ICI MIS E	111 0020							rinaryst. I I
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	9.9	1.0	0.04	20	B8K0289	11/08/2018	11/08/18 14:57	D1

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER15-0.5 Lab ID: 1804036-45

Total Metals by ICP-AES EPA 6010B Analyst: GO Result POL MDL Date/Time (mg/kg) (mg/kg) Dilution Batch Prepared Analyzed Notes Analyte (mg/kg) 67 1.0 0.18 B8J0805 10/30/2018 10/31/18 16:06 Lead 1 Analyst: PT **Total Metals by ICP-MS EPA 6020** MDL Result **PQL** Date/Time Analyzed Analyte (mg/kg) (mg/kg) (mg/kg) Dilution Batch Prepared Notes Arsenic 6.1 1.0 0.04 20 B8K0006 10/31/2018 11/01/18 12:40 D1 STLC Metals by ICP-AES by EPA 6010B **Analyst: KEK** PQL Date/Time Result Dilution Analyte (mg/L) (mg/L) Batch Prepared Analyzed Notes Lead 3.7 1.0 20 B8K0286 11/08/2018 11/08/18 15:07 D1 Mercury by AA (Cold Vapor) EPA 7471A Analyst: KEK POL MDL Date/Time Result Analyte (mg/kg) (mg/kg) (mg/kg) Dilution Batch Prepared Analyzed Notes 11/01/18 12:16 J 0.07 0.006 B8J0808 10/30/2018 Mercury 0.10 1 Diesel Range Organics by EPA 8015B Analyst: CR MDL Result PQL Date/Time Analyte (mg/kg) (mg/kg) Dilution Batch Prepared Analyzed Notes (mg/kg) 10 B8J0859 10/31/2018 11/01/18 00:36 DRO 120 10 10 ORO 260 10 10 10 B8J0859 10/31/2018 11/01/18 00:36 Organochlorine Pesticides by EPA 8081 Analyst: CO/ Result **PQL** MDL Date/Time (ug/kg) Analyzed Analyte (ug/kg) (ug/kg) Dilution Batch Prepared Notes 4,4'-DDT 10 2.0 0.10 B8J0820 10/30/2018 10/31/18 00:27 1 alpha-Chlordane 6.5 1.0 0.12 1 B8J0820 10/30/2018 10/31/18 00:27 72 1.1 B8J0820 10/30/2018 10/31/18 00:27 Chlordane 8.5 gamma-Chlordane [2C] 5.8 1.0 0.07 B8J0820 10/30/2018 10/31/18 00:27

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

DETECTION SUMMARY

Client Sample ID PER16-0.5

Total Metals by ICP-	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	7.3	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:13	
Total Metals by ICP-	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	3.3	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:40	D1
Mercury by AA (Cold	l Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:18	J
Diesel Range Organic	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	3.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:52	
ORO	12	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:52	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Reported : \ 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER17-0.5

Total Metals by ICP-	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.0	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:14	
Total Metals by ICP-	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	2.9	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:41	D1
Mercury by AA (Cold	l Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.02	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:20	J
Diesel Range Organio	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	9.1	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:08	
ORO	24	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:08	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Reported : \ 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER18-0.5

Total Metals by ICP-A	ES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	3.6	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:45	
Total Metals by ICP-M	S EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	2.0	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:44	D1
Mercury by AA (Cold V	Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:26	J
Diesel Range Organics	by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	8.9 12	1.0 1.0	1.0 1.0	1 1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 04:50 11/01/18 04:50	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER19-0.5

Total Metals by ICP-	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	1.8	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:50	
Mercury by AA (Cold	l Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:39	J
Diesel Range Organic	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	5.6	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 04:16	
ORO	7.8	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 04:16	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER20-0.5

Total Metals by ICP-AES I	EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	7.8	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:51	
Total Metals by ICP-MS E	PA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	4.0	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:50	D1
Mercury by AA (Cold Vapo	or) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:41	J
Diesel Range Organics by l	EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	6.4	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:00	
ORO	10	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:00	
Organochlorine Pesticides	by EPA 8081							Analyst: CO
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	0.13	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 10:50	J
alpha-Chlordane [2C]	0.12	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 10:50	J
Chlordane	1.4	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 10:50	
gamma-Chlordane	0.09	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 10:50	J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $\begin{array}{ccc} 17781 \ Cowan \ Street & Report \ To: \ Ross \ Surrency \\ Irvine \ , CA \ 92614 & Reported : \ 11/09/2018 \\ \end{array}$

DETECTION SUMMARY

Client Sample ID PER21-0.5

Total Metals by ICP-AES	S EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.6	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:52	
Fotal Metals by ICP-MS	EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	2.3	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:50	D1
Mercury by AA (Cold Va	npor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:43	J
Diesel Range Organics b	y EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	11 18	1.0 1.0	1.0 1.0	1 1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 05:42 11/01/18 05:42	
Organochlorine Pesticido	es by EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	0.15	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:01	J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Reported : \ 11/09/2018$

DETECTION SUMMARY

Client Sample ID DUP-3

Total Metals by ICP-Al	ES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	34	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:53	
Total Metals by ICP-M	S EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	3.8	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:51	D1
Mercury by AA (Cold V	/apor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:45	J
Diesel Range Organics	by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	500 830	10 10	10 10	10 10	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 07:44 11/01/18 07:44	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

DETECTION SUMMARY

Client Sample ID PER22-0.5

Lab ID: 1804036-67

Total Metals by ICP-AES EI	PA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	8.2	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:57	
Total Metals by ICP-MS EPA	A 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	3.8	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:52	D1
Mercury by AA (Cold Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:47	J
Diesel Range Organics by El	PA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	74 110	1.0 1.0	1.0 1.0	1 1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 06:52 11/01/18 06:52	
Organochlorine Pesticides by	y EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
beta-BHC gamma-BHC [2C]	0.70 0.37	1.0 1.0	0.06 0.10	1 1	B8K0014 B8K0014	11/01/2018 11/01/2018	11/01/18 11:22 11/01/18 11:22	

Client Sample ID PER22-1.5

Diesel Range Organics by EPA	8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	7.8	1.0	1.0	1	B8K0152	11/05/2018	11/06/18 12:27	
ORO	10	1.0	1.0	1	B8K0152	11/05/2018	11/06/18 12:27	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER23-0.5

Fotal Metals by ICP-	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	3.0	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:58	
Fotal Metals by ICP-	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	3.2	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:53	D1
Mercury by AA (Cold	l Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.04	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:48	J
Diesel Range Organio	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	13	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:25	
ORO	22	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:25	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER24-0.5

Total Metals by ICP-AES	EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	64	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:59	
Fotal Metals by ICP-MS 1	EPA 6020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.1	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:54	D1
STLC Metals by ICP-AES	S by EPA 6010B							Analyst: KEK
Analyte	Result (mg/L)		PQL ng/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	8.3		1.0	20	B8K0286	11/08/2018	11/08/18 15:11	D1
Mercury by AA (Cold Var	oor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:50	J
Diesel Range Organics by	EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	43	5.0	5.0	5	B8J0879	10/31/2018	11/01/18 08:02	
ORO	100	5.0	5.0	5	B8J0879	10/31/2018	11/01/18 08:02	
Organochlorine Pesticides	s by EPA 8081							Analyst: CO
	Result	PQL	MDL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
alpha-BHC	1.7	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 11:43	
alpha-Chlordane	2.7	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 11:43	
Chlordane [2C]	27	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 11:43	
gamma-Chlordane	2.4	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:43	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $\begin{array}{ccc} 17781 \ Cowan \ Street & Report \ To: \ Ross \ Surrency \\ Irvine \ , CA \ 92614 & Reported : \ 11/09/2018 \\ \end{array}$

DETECTION SUMMARY

Client Sample ID PER25-0.5

Total Metals by ICP-AES E	CPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	37	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:01	
Total Metals by ICP-MS El	PA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	4.6	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:55	D1
Mercury by AA (Cold Vapo	or) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:52	J
Diesel Range Organics by E	EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	8.7	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 07:27	
ORO	20	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 07:27	
Organochlorine Pesticides l	by EPA 8081							Analyst: CO
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDE [2C]	1.8	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:53	J
alpha-Chlordane	0.85	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 11:53	J
Chlordane [2C] gamma-Chlordane	8.8 0.69	8.5 1.0	1.1 0.07	1 1	B8K0014 B8K0014	11/01/2018 11/01/2018	11/01/18 11:53 11/01/18 11:53	J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER26-0.5

Total Metals by ICP-AES E	PA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.9	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:02	
Total Metals by ICP-MS EP	A 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	4.4	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:55	D1
Mercury by AA (Cold Vapor	·) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.04	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:58	J
Diesel Range Organics by E	PA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	9.6 19	1.0 1.0	1.0 1.0	1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 07:09 11/01/18 07:09	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

DETECTION SUMMARY

Client Sample ID PER27-0.5

Total Metals by ICP-A	AES EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.3	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:03	
Total Metals by ICP-I	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	7.1	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:56	D1
Mercury by AA (Cold	l Vapor) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 13:00	J
Diesel Range Organic	es by EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	4.8	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:17	
ORO	7.3	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:17	

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	4.8	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:17	
ORO	7.3	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:17	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $\begin{array}{ccc} 17781 \ Cowan \ Street & Report \ To: \ Ross \ Surrency \\ Irvine \ , CA \ 92614 & Reported : \ 11/09/2018 \end{array}$

DETECTION SUMMARY

Client Sample ID PER28-0.5

Fotal Metals by ICP-AES	S EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	1.5	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:04	
Fotal Metals by ICP-MS	EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	7.5	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:59	D1
Mercury by AA (Cold Va	por) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 13:02	J
Diesel Range Organics by	y EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	1.2 3.1	1.0 1.0	1.0 1.0	1 1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 03:59 11/01/18 03:59	
Organochlorine Pesticide	es by EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	0.10	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 12:25	J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/09/2018$

DETECTION SUMMARY

Client Sample ID PER29-0.5

Lab ID: 1804036-88

Total Metals by ICP-AES	EPA 6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.1	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:05	
Total Metals by ICP-MS	EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	6.6	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 13:00	D1
Mercury by AA (Cold Va)	por) EPA 7471A							Analyst: KEK
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 13:04	J
Diesel Range Organics by	EPA 8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	2.8 6.5	1.0 1.0	1.0 1.0	1 1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 06:34 11/01/18 06:34	

Client Sample ID EB-1

Diesel Range Organics by EPA 8015B									
Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
DRO	0.12	0.05	0.05	1	B8K0020	11/01/2018	11/01/18 12:30		
ORO	0.11	0.05	0.05	1	B8K0020	11/01/2018	11/01/18 12:30		

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER1-0.5 Lab ID: 1804036-01

Total Metals by ICP-AES EPA 6010B

Analyst: GO

	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Lead	4.0	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:12		

Total Metals by ICP-MS EPA 6020

Analyst: PT

Analyte Arsenic	(mg/kg)	(mg/kg)	(mg/kg)	Dilution 20	Batch B8K0006	Prepared 10/31/2018	Analyzed 11/01/18 12:20	Notes D1	
	Result	PQL	MDL				Date/Time		

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Mercury	0.05	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:31	J	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 10:08	
Surrogate: 4-Bromofluorobenzene	104 %	42	- 153		B8J0773	10/30/2018	10/30/18 10:08	

Diesel Range Organics by EPA 8015B

Analyst: CR

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	1.5	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:44	
ORO	4.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:44	
Surrogate: n-Ternhenyl	54.3 %	34	1 - 158	•	B810859	10/31/2018	10/31/18 21:44	•

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	1.6	20	0.70	10	B8J0820	10/30/2018	10/31/18 20:28	J
4,4′-DDE	ND	20	0.53	10	B8J0820	10/30/2018	10/31/18 20:28	
4,4´-DDT	ND	20	1.0	10	B8J0820	10/30/2018	10/31/18 20:28	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER1-0.5 Lab ID: 1804036-01

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	10	0.37	10	B8J0820	10/30/2018	10/31/18 20:28	
alpha-BHC	ND	10	1.1	10	B8J0820	10/30/2018	10/31/18 20:28	
alpha-Chlordane	10	10	1.2	10	B8J0820	10/30/2018	10/31/18 20:28	
beta-BHC	ND	10	0.60	10	B8J0820	10/30/2018	10/31/18 20:28	
Chlordane [2C]	57	85	11	10	B8J0820	10/30/2018	10/31/18 20:28	J
delta-BHC	ND	10	0.33	10	B8J0820	10/30/2018	10/31/18 20:28	
Dieldrin	93	20	1.3	10	B8J0820	10/30/2018	10/31/18 20:28	
Endosulfan I	ND	10	1.0	10	B8J0820	10/30/2018	10/31/18 20:28	
Endosulfan II	ND	20	0.29	10	B8J0820	10/30/2018	10/31/18 20:28	
Endosulfan sulfate	ND	20	0.77	10	B8J0820	10/30/2018	10/31/18 20:28	
Endrin	ND	20	0.39	10	B8J0820	10/30/2018	10/31/18 20:28	
Endrin aldehyde	ND	20	3.1	10	B8J0820	10/30/2018	10/31/18 20:28	
Endrin ketone	ND	20	1.3	10	B8J0820	10/30/2018	10/31/18 20:28	
gamma-BHC	ND	10	1.0	10	B8J0820	10/30/2018	10/31/18 20:28	
gamma-Chlordane	4.9	10	0.70	10	B8J0820	10/30/2018	10/31/18 20:28	J
Heptachlor	ND	10	0.47	10	B8J0820	10/30/2018	10/31/18 20:28	
Heptachlor epoxide [2C]	4.4	10	0.89	10	B8J0820	10/30/2018	10/31/18 20:28	J
Methoxychlor	ND	50	1.8	10	B8J0820	10/30/2018	10/31/18 20:28	
Toxaphene	ND	500	47	10	B8J0820	10/30/2018	10/31/18 20:28	
Surrogate: Decachlorobiphenyl	50.4 %	4.	3 - 84		B8J0820	10/30/2018	10/31/18 20:28	
Surrogate: Tetrachloro-m-xylene	50.8 %	54	! - 118		B8J0820	10/30/2018	10/31/18 20:28	S10

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 10:22	
Surrogate: Decachlorobiphenyl	51.0 %	43 - 84		B8K0014	11/01/2018	11/01/18 10:22	
Surrogate: Tetrachloro-m-xylene	65.1 %	54 - 118		B8K0014	11/01/2018	11/01/18 10:22	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER1-1.5 Lab ID: 1804036-02

Organochlorine Pesticides by EPA 8081

	Result	DOL						
Analyte	(ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0267	11/07/2018	11/07/18 18:12	
4,4′-DDE	ND	2.0	0.05	1	B8K0267	11/07/2018	11/07/18 18:12	
4,4′-DDT	ND	2.0	0.10	1	B8K0267	11/07/2018	11/07/18 18:12	
Aldrin	ND	1.0	0.04	1	B8K0267	11/07/2018	11/07/18 18:12	
alpha-BHC	ND	1.0	0.11	1	B8K0267	11/07/2018	11/07/18 18:12	
alpha-Chlordane	ND	1.0	0.12	1	B8K0267	11/07/2018	11/07/18 18:12	
beta-BHC	ND	1.0	0.06	1	B8K0267	11/07/2018	11/07/18 18:12	
Chlordane	ND	8.5	1.1	1	B8K0267	11/07/2018	11/07/18 18:12	
delta-BHC	ND	1.0	0.03	1	B8K0267	11/07/2018	11/07/18 18:12	
Dieldrin	ND	2.0	0.13	1	B8K0267	11/07/2018	11/07/18 18:12	
Endosulfan I	ND	1.0	0.10	1	B8K0267	11/07/2018	11/07/18 18:12	
Endosulfan II	ND	2.0	0.03	1	B8K0267	11/07/2018	11/07/18 18:12	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0267	11/07/2018	11/07/18 18:12	
Endrin	ND	2.0	0.04	1	B8K0267	11/07/2018	11/07/18 18:12	
Endrin aldehyde	ND	2.0	0.31	1	B8K0267	11/07/2018	11/07/18 18:12	
Endrin ketone	ND	2.0	0.13	1	B8K0267	11/07/2018	11/07/18 18:12	
gamma-BHC	ND	1.0	0.10	1	B8K0267	11/07/2018	11/07/18 18:12	
gamma-Chlordane	ND	1.0	0.07	1	B8K0267	11/07/2018	11/07/18 18:12	
Heptachlor	ND	1.0	0.05	1	B8K0267	11/07/2018	11/07/18 18:12	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0267	11/07/2018	11/07/18 18:12	
Methoxychlor	ND	5.0	0.18	1	B8K0267	11/07/2018	11/07/18 18:12	
Toxaphene	ND	50	4.7	1	B8K0267	11/07/2018	11/07/18 18:12	
Surrogate: Decachlorobiphenyl	35.0 %	43	3 - 84		B8K0267	11/07/2018	11/07/18 18:12	S10
Surrogate: Tetrachloro-m-xylene	32.0 %	54	- 118		B8K0267	11/07/2018	11/07/18 18:12	S10

Certificate of Analysis

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER2-0.5 Lab ID: 1804036-04

Total Metals by ICP-AES EPA 60	10B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.8	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:16	

Total Metals by ICP-MS EPA 6020									
	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Arsenic	6.9	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 13:01	D1	

Mercury by AA (Cold Va	por) EPA 7471A							Analyst: K	EK
	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Mercury	0.06	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:41	J	

Gasoline Range Organics by EPA 8015B (Modified)										
	Result	PQL	MDL				Date/Time			
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes		
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 10:26			

•						•		
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 10:26	
Surrogate: 4-Bromofluorobenzene	75.1 %	42	- 153		B8J0773	10/30/2018	10/30/18 10:26	

Diesel Range Organics by EPA 8015B										
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes		
DRO	5.0	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:10			
ORO	8.1	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:10			
Surrogate: p-Terphenyl	65.7 %	34	- 158		B8J0859	10/31/2018	10/31/18 21:10			

Organochlorine Pesticides by EPA 8081										
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes		
4,4'-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 21:50			
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 21:50			
4,4´-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 21:50			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER2-0.5 Lab ID: 1804036-04

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 21:50	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 21:50	
alpha-Chlordane	6.6	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 21:50	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 21:50	
Chlordane	63	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 21:50	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 21:50	
Dieldrin [2C]	33	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 21:50	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 21:50	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 21:50	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 21:50	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 21:50	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 21:50	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 21:50	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 21:50	
gamma-Chlordane [2C]	3.4	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 21:50	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 21:50	
Heptachlor epoxide	3.4	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 21:50	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 21:50	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 21:50	
Surrogate: Decachlorobiphenyl	52.1 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 21:50	
Surrogate: Tetrachloro-m-xylene	63.2 %	54	- 118		B8J0820	10/30/2018	10/30/18 21:50	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER3-0.5 Lab ID: 1804036-07

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	5.4	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:17	
Total Metals by ICP-N	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	6.0	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:25	D1
Mercury by AA (Cold	Vanor) EPA 7471A							Analyst: KEK

Mercury	by AA	(Cold	Vapor)	EPA 7471A
---------	-------	-------	--------	-----------

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B810808	10/30/2018	11/01/18 11:42	Ţ

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 10:45	
Surrogate: 4-Bromofluorobenzene	101 %	42	- 153	•	B8J0773	10/30/2018	10/30/18 10:45	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B									
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
DRO	2.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:27		
ORO	3.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 21:27		
Surrogate: p-Terphenyl	52.7 %	34	- 158		B8J0859	10/31/2018	10/31/18 21:27		

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:01	
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:01	
4,4'-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:01	

Analyst: CO/

Analyst: GO

Analyst: VW

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER3-0.5 Lab ID: 1804036-07

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:01	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 22:01	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 22:01	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 22:01	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 22:01	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:01	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:01	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:01	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:01	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 22:01	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:01	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 22:01	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:01	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:01	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:01	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:01	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 22:01	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 22:01	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 22:01	
Surrogate: Decachlorobiphenyl	34.6 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 22:01	S10
Surrogate: Tetrachloro-m-xylene	45.4 %	54	- 118		B8J0820	10/30/2018	10/30/18 22:01	S10

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID DUP-1 Lab ID: 1804036-10

Analyst: GO

	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Lead	0.63	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:19	J	

Total Metals by ICP-MS EPA 6020

Analyst: PT

	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Arsenic	2.7	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:25	D1	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Mercury	0.03	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:44	J	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 11:04	
Surrogate: 4-Bromofluorobenzene	98.3 %	42	- 153		B8J0773	10/30/2018	10/30/18 11:04	

Diesel Range Organics by EPA 8015B

Analyst: CR

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	2.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:18	
ORO	1.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:18	
Surrogate: p-Terphenyl	91.6 %	34	! - 158		B8J0859	10/31/2018	10/31/18 20:18	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:11	
4,4′-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:11	
4,4'-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:11	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID DUP-1 Lab ID: 1804036-10

Organochlorine Pesticides by EPA 8081

Analyst: CO/

	Result	PQL	MDL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:11	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 22:11	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 22:11	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 22:11	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 22:11	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:11	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:11	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:11	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:11	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 22:11	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:11	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 22:11	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:11	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:11	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:11	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:11	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 22:11	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 22:11	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 22:11	
Surrogate: Decachlorobiphenyl	49.2 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 22:11	
Surrogate: Tetrachloro-m-xylene	68.0 %	54	- 118		B8J0820	10/30/2018	10/30/18 22:11	

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 10:41	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 10:41	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 10:41	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 10:41	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 10:41	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 10:41	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 10:41	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 10:41	
Aroclor 1268	ND	16	11	B8K0014	11/01/2018	11/01/18 10:41	
Surrogate: Decachlorobiphenyl	51.1 %	43 - 84		B8K0014	11/01/2018	11/01/18 10:41	
Surrogate: Tetrachloro-m-xylene	87.6 %	54 - 118		B8K0014	11/01/2018	11/01/18 10:41	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER4-0.5 Lab ID: 1804036-11

Total Metals by ICP-AES EPA	6010B							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	15	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:20	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	7.0	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:26	D1
Mercury by AA (Cold Vapor) F	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:50	J
Gasoline Range Organics by E.	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 11:22	
Surrogate: 4-Bromofluorobenzene	112 %	42	- 153		B8J0773	10/30/2018	10/30/18 11:22	
	8015B							Analyst: CR
Diesel Range Organics by EPA	00101							
Diesel Range Organics by EPA	Result	PQL	MDL				Date/Time	
		PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Diesel Range Organics by EPA Analyte DRO	Result	_		Dilution	Batch B8J0859	Prepared 10/31/2018		Notes

Organochlorine	Pε	esticides	bv	EPA	8081
-----------------------	----	-----------	----	-----	------

59.7 %

Surrogate: p-Terphenyl

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:22	
4,4'-DDE [2C]	1.6	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:22	J
4,4'-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:22	

B8J0859

10/31/2018

10/31/18 22:52

34 - 158

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER4-0.5 Lab ID: 1804036-11

Organochlorine Pesticides by EPA 8081

Analyta	Result	PQL	MDL (ug/kg)	Dilution	Datah	Dramarad	Date/Time	Natas
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:22	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 22:22	
alpha-Chlordane	4.1	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 22:22	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 22:22	
Chlordane [2C]	49	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 22:22	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:22	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:22	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:22	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:22	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 22:22	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:22	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 22:22	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:22	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:22	
gamma-Chlordane	2.1	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:22	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:22	
Heptachlor epoxide [2C]	3.8	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 22:22	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 22:22	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 22:22	
Surrogate: Decachlorobiphenyl	46.8 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 22:22	
Surrogate: Tetrachloro-m-xylene	56.6 %	54	- 118		B8J0820	10/30/2018	10/30/18 22:22	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER5-0.5 Lab ID: 1804036-14

Total Metals by ICP-AES EPA	0010D							Analyst: GC
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	6.6	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:21	
otal Metals by ICP-MS EPA 6	020							Analyst: P
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.2	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:29	D1
Mercury by AA (Cold Vapor) E	PA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.07	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:52	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 11:41	
Surrogate: 4-Bromofluorobenzene	108 %	42	- 153		B8J0773	10/30/2018	10/30/18 11:41	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes

Organochlorine Pesticides by EPA 8081

9.3

85.0 %

1.0

ORO

Surrogate: p-Terphenyl

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:32	
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:32	
4,4′-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:32	

B8J0859

B8J0859

10/31/2018

10/31/2018

10/31/18 23:10

10/31/18 23:10

Analyst: CO/

1.0

34 - 158

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER5-0.5 Lab ID: 1804036-14

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:32	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 22:32	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 22:32	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 22:32	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 22:32	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:32	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:32	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:32	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:32	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 22:32	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:32	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 22:32	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:32	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:32	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:32	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:32	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 22:32	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 22:32	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 22:32	
Surrogate: Decachlorobiphenyl	47.5 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 22:32	
Surrogate: Tetrachloro-m-xylene	59.2 %	54	- 118		B8J0820	10/30/2018	10/30/18 22:32	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER6-0.5 Lab ID: 1804036-17

	6010B							Analyst: GC
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	1.6	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 11:22	
otal Metals by ICP-MS EPA 6	5020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.7	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 13:02	D1
Mercury by AA (Cold Vapor) E	EPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.08	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:54	J
		1100 1						Amalasata VIII
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: v w
Gasoline Range Organics by E	PA 8015B (Mo	PQL	MDL				Date/Time	Analyst: v w
	•		MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Analyte	Result	PQL		Dilution	Batch B8J0773	Prepared 10/30/2018		· · · · · · · · · · · · · · · · · · ·
Analyte Gasoline Range Organics	Result (mg/kg)	PQL (mg/kg)	(mg/kg)			-	Analyzed	· · · · · · · · · · · · · · · · · · ·
Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene	Result (mg/kg) ND 82.2 %	PQL (mg/kg)	(mg/kg)		B8J0773	10/30/2018	Analyzed 10/30/18 11:59	Notes
Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene	Result (mg/kg) ND 82.2 %	PQL (mg/kg)	(mg/kg)		B8J0773	10/30/2018	Analyzed 10/30/18 11:59	Notes
Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA	Result (mg/kg) ND 82.2 % 8015B	PQL (mg/kg) 1.0 42	(mg/kg) 0.20 - 153		B8J0773	10/30/2018	Analyzed 10/30/18 11:59 10/30/18 11:59	Analyst: CR Notes
Analyte Gasoline Range Organics by El Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA Analyte DRO	Result (mg/kg) ND 82.2 % 8015B Result	PQL (mg/kg) 1.0 42	(mg/kg) 0.20 - 153 MDL	1	B8J0773 B8J0773	10/30/2018 10/30/2018	Analyzed 10/30/18 11:59 10/30/18 11:59 Date/Time	Notes Analyst: CR

Organochlorine Pesticides by EPA 8081

Surrogate: p-Terphenyl

81.6 %

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:43	
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:43	
4,4'-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:43	

B8J0859

10/31/2018

10/31/18 17:18

34 - 158

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER6-0.5 Lab ID: 1804036-17

Organochlorine Pesticides by EPA 8081

	Result	PQL	MDL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:43	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 22:43	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 22:43	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 22:43	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 22:43	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:43	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:43	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:43	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:43	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 22:43	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:43	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 22:43	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:43	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:43	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:43	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:43	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 22:43	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 22:43	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 22:43	
Surrogate: Decachlorobiphenyl	44.7 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 22:43	
Surrogate: Tetrachloro-m-xylene	55.7 %	54	- 118		B8J0820	10/30/2018	10/30/18 22:43	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER7-0.5 Lab ID: 1804036-20

Total Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	1.6	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 15:55	
Total Metals by ICP-MS EPA 6	020							Analyst: P
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.1	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:30	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEl
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.07	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:56	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VV
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 12:18	
Surrogate: 4-Bromofluorobenzene	100 %	42	? - 153		B8J0773	10/30/2018	10/30/18 12:18	
Diesel Range Organics by EPA	8015B							Analyst: Cl

8 8 1								J
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	3.0	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:35	
ORO	3.7	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:35	
Surrogate: p-Terphenyl	43.9 %	34	! - 158		B8J0859	10/31/2018	10/31/18 17:35	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:53	
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:53	
4,4´-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:53	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER7-0.5 Lab ID: 1804036-20

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:53	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 22:53	
alpha-Chlordane	0.21	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 22:53	J
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 22:53	
Chlordane [2C]	3.3	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 22:53	J
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:53	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:53	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:53	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 22:53	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 22:53	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 22:53	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 22:53	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 22:53	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 22:53	
gamma-Chlordane [2C]	0.27	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 22:53	J
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 22:53	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 22:53	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 22:53	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 22:53	
Surrogate: Decachlorobiphenyl	41.5 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 22:53	S10
Surrogate: Tetrachloro-m-xylene	54.1 %	54	- 118		B8J0820	10/30/2018	10/30/18 22:53	

4,4'-DDT

Certificate of Analysis

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER8-0.5 Lab ID: 1804036-23

Total Metals by ICP-AES EPA 6010B									
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Lead	9.4	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 15:56		

Total Metals by ICP-MS EPA 6020									
	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Arsenic	8.3	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:31	D1	

Mercury by AA (Cold Vapor) EPA	A 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.07	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 11:58	J

Gasoline Range Organics by E	soline Range Organics by EPA 8015B (Modified) An										
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes			
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 12:37				

Surrogate: 4-Bromofluorobenzene	88.0 %	42 - 153	B8J0773	10/30/2018	10/30/18 12:37	
Diesel Range Organics by EPA	8015B					Analyst: CR

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	10	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 23:44	
ORO	27	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 23:44	
Surrogate: p-Terphenyl	75.0 %	34	! - 158		B8J0859	10/31/2018	10/31/18 23:44	

Organochlorine Pesticide	es by EPA 8081							Analyst: CO/
	Result	PQL	MDL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:04	
4.4'-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:04	

B8J0820

10/30/2018

10/30/18 23:04

0.10

ND

2.0

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER8-0.5 Lab ID: 1804036-23

Organochlorine Pesticides by EPA 8081

	Result	PQL	MDL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:04	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 23:04	
alpha-Chlordane	4.2	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 23:04	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 23:04	
Chlordane	40	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 23:04	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:04	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:04	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:04	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:04	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 23:04	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:04	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 23:04	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:04	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:04	
gamma-Chlordane	1.9	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:04	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:04	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 23:04	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 23:04	
Гохарнепе	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 23:04	
Surrogate: Decachlorobiphenyl	56.6 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 23:04	
Surrogate: Tetrachloro-m-xylene	62.6 %	54	- 118		B8J0820	10/30/2018	10/30/18 23:04	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER9-0.5 Lab ID: 1804036-26

Total Metals by ICP-AES EPA	00100							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	0.98	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 15:58	J
Total Metals by ICP-MS EPA 6	0020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	5.7	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:32	D1
Mercury by AA (Cold Vapor) E	PA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.08	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:00	J
Gasoline Range Organics by EI	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 12:55	
Surrogate: 4-Bromofluorobenzene	105 %	42	? - 153		B8J0773	10/30/2018	10/30/18 12:55	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes

Organochlorine Pesticides by EPA 8081

DRO

ORO

Surrogate: p-Terphenyl

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:14	
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:14	
4,4'-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:14	

1

B8J0859

B8J0859

B8J0859

10/31/2018

10/31/2018

10/31/2018

10/31/18 20:35

10/31/18 20:35

10/31/18 20:35

1.0

1.0

34 - 158

2.0

2.6

77.3 %

1.0

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER9-0.5 Lab ID: 1804036-26

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:14	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 23:14	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 23:14	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 23:14	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 23:14	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:14	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:14	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:14	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:14	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 23:14	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:14	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 23:14	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:14	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:14	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:14	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:14	
Heptachlor epoxide [2C]	0.13	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 23:14	J
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 23:14	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 23:14	
Surrogate: Decachlorobiphenyl	50.8 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 23:14	
Surrogate: Tetrachloro-m-xylene	65.0 %	54	- 118		B8J0820	10/30/2018	10/30/18 23:14	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER10-0.5 Lab ID: 1804036-29

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	0.71	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 15:59	J
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.7	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:33	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:01	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 13:14	
Surrogate: 4-Bromofluorobenzene	100 %	42	- 153		B8J0773	10/30/2018	10/30/18 13:14	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	3.8	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:00	
ORO	3.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 17:00	

Organochlorine Pesticides by EPA 8081

Surrogate: p-Terphenyl

89.8 %

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:24	
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:24	
4,4´-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:24	

B8J0859

10/31/2018

10/31/18 17:00

Analyst: CO/

34 - 158

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER10-0.5 Lab ID: 1804036-29

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:24	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 23:24	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 23:24	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 23:24	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 23:24	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:24	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:24	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:24	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:24	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 23:24	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:24	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 23:24	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:24	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:24	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:24	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:24	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 23:24	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 23:24	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 23:24	
Surrogate: Decachlorobiphenyl	46.2 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 23:24	
Surrogate: Tetrachloro-m-xylene	56.2 %	54	- 118		B8J0820	10/30/2018	10/30/18 23:24	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER11-0.5 Lab ID: 1804036-32

Total Metals by ICP-AES EPA	6010B							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	1.4	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:00	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	6.2	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:34	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:03	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 13:32	
Surrogate: 4-Bromofluorobenzene	109 %	42	- 153		B8J0773	10/30/2018	10/30/18 13:32	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.3	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 23:27	

Result **PQL** MDLDate/Time Analyte (ug/kg) (ug/kg) (ug/kg) Dilution Batch Prepared Analyzed Notes 4,4'-DDD ND 2.0 0.07 B8J0820 10/30/2018 10/30/18 23:35

B8J0859

10/31/2018

4,4'-DDE ND 2.0 0.05 B8J0820 10/30/2018 10/30/18 23:35 1 4,4'-DDT ND 0.10 B8J0820 10/30/2018 10/30/18 23:35 2.0 1

34 - 158

81.0 %

Surrogate: p-Terphenyl

Organochlorine Pesticides by EPA 8081

Analyst: CO/

10/31/18 23:27

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER11-0.5 Lab ID: 1804036-32

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result	PQL	MDL (ug/kg)	Dilution	Datah	Dranarad	Date/Time Analyzed	Notes
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Anaryzed	notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:35	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 23:35	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 23:35	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 23:35	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 23:35	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:35	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:35	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:35	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:35	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 23:35	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:35	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 23:35	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:35	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:35	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:35	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:35	
Heptachlor epoxide [2C]	0.12	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 23:35	J
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 23:35	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 23:35	
Surrogate: Decachlorobiphenyl	47.1 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 23:35	
Surrogate: Tetrachloro-m-xylene	64.5 %	54	- 118		B8J0820	10/30/2018	10/30/18 23:35	

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 10:59	
Surrogate: Decachlorobiphenyl	67.0 %	43 - 84		B8K0014	11/01/2018	11/01/18 10:59	
Surrogate: Tetrachloro-m-xylene	86.1 %	54 - 118		B8K0014	11/01/2018	11/01/18 10:59	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER12-0.5 Lab ID: 1804036-35

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	18	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:02	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	11	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:35	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.10	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:05	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 13:51	
Surrogate: 4-Bromofluorobenzene	75.1 %	42	- 153		B8J0773	10/30/2018	10/30/18 13:51	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	110	5.0	5.0	5	B8J0859	10/31/2018	11/01/18 00:54	
DRO ORO	110 140	5.0 5.0	5.0 5.0	5 5	B8J0859 B8J0859	10/31/2018 10/31/2018	11/01/18 00:54 11/01/18 00:54	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:45	
4,4′-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:45	
4,4´-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:45	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER12-0.5 Lab ID: 1804036-35

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:45	
alpha-BHC	1.9	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 23:45	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 23:45	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 23:45	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 23:45	
delta-BHC [2C]	0.89	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:45	J
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:45	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:45	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:45	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 23:45	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:45	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 23:45	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:45	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:45	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:45	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:45	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 23:45	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 23:45	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 23:45	
Surrogate: Decachlorobiphenyl	40.6 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 23:45	S10
Surrogate: Tetrachloro-m-xylene	68.5 %	54	- 118		B8J0820	10/30/2018	10/30/18 23:45	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER12-1.5 Lab ID: 1804036-36

Total Metals by ICP-MS EPA 6020

Analyst: PT

	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	2.2	1.0	0.04	20	B8K0091	11/02/2018	11/04/18 14:49	D1

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

> **Client Sample ID DUP-2** Lab ID: 1804036-38

Total Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	20	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:03	

Total Metals by ICP-MS EPA 6020

Analyst: PT

	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Arsenic	12	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:35	D1	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Mercury	0.06	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:07	Ī	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
	Result	PQL	MDL				Date/Time		

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0773	10/30/2018	10/30/18 14:09	
Surrogate: 4-Bromofluorobenzene	90.2 %	42	- 153		B8J0773	10/30/2018	10/30/18 14:09	

Diesel Range Organics by EPA 8015B

Analyst: CR

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	220	5.0	5.0	5	B8J0859	10/31/2018	11/01/18 01:11	
ORO	240	5.0	5.0	5	B8J0859	10/31/2018	11/01/18 01:11	
Surrogate: n-Ternhemil	35.1%	34	! - 158		B810859	10/31/2018	11/01/18 01:11	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:56	
4,4'-DDE	7.9	2.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:56	
4,4'-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:56	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID DUP-2 Lab ID: 1804036-38

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin [2C]	1.1	1.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:56	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/30/18 23:56	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/30/18 23:56	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/30/18 23:56	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/30/18 23:56	
delta-BHC [2C]	2.0	1.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:56	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:56	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:56	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/30/18 23:56	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/30/18 23:56	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/30/18 23:56	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/30/18 23:56	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/30/18 23:56	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/30/18 23:56	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/30/18 23:56	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/30/18 23:56	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/30/18 23:56	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/30/18 23:56	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/30/18 23:56	
Surrogate: Decachlorobiphenyl	46.2 %	43	3 - 84		B8J0820	10/30/2018	10/30/18 23:56	
Surrogate: Tetrachloro-m-xylene	73.6 %	54	- 118		B8J0820	10/30/2018	10/30/18 23:56	

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
	(*8 8)				1		
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 11:18	
Surrogate: Decachlorobiphenyl	56.8 %	43 - 84		B8K0014	11/01/2018	11/01/18 11:18	
Surrogate: Tetrachloro-m-xylene	75.3 %	54 - 118		B8K0014	11/01/2018	11/01/18 11:18	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER13-0.5 Lab ID: 1804036-39

Total Metals by ICP-AES EPA	6010B							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	13	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:04	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	10	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:36	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.04	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:13	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 19:13	
Surrogate: 4-Bromofluorobenzene	64.5 %	42	- 153		B8J0812	10/30/2018	10/30/18 19:13	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
		1.0	1.0	1	D010050	10/21/2010	11/01/10 00 10	
DRO	24	1.0	1.0	1	B8J0859	10/31/2018	11/01/18 00:19	

Organochlorine Pesticides by EPA 8081

Surrogate: p-Terphenyl

52.4 %

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD [2C]	0.35	2.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:06	J
4,4′-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:06	
4,4´-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:06	

B8J0859

10/31/2018

11/01/18 00:19

Analyst: CO/

34 - 158

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER13-0.5 Lab ID: 1804036-39

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:06	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/31/18 00:06	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/31/18 00:06	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/31/18 00:06	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/31/18 00:06	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:06	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:06	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:06	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:06	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/31/18 00:06	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:06	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/31/18 00:06	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:06	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:06	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:06	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:06	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/31/18 00:06	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/31/18 00:06	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/31/18 00:06	
Surrogate: Decachlorobiphenyl	36.0 %	43	3 - 84		B8J0820	10/30/2018	10/31/18 00:06	S10
Surrogate: Tetrachloro-m-xylene	49.7 %	54	- 118		B8J0820	10/30/2018	10/31/18 00:06	S10

Organochlorine Pesticides by EPA 8081

Analyte

4,4'-DDD

4,4'-DDE

4,4'-DDT

Result

(ug/kg)

ND

ND

ND

PQL

(ug/kg)

2.0

2.0

2.0

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER14-0.5 Lab ID: 1804036-42

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	14	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:05	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	12	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:39	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.04	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:14	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8K0002	11/01/2018	11/01/18 10:05	
Surrogate: 4-Bromofluorobenzene	97.6 %	42	- 153		B8K0002	11/01/2018	11/01/18 10:05	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	13	1.0	1.0	1	B8J0859	10/31/2018	11/01/18 00:01	
ORO	23	1.0	1.0	1	B8J0859	10/31/2018	11/01/18 00:01	

Analyst: CO/

Notes

Date/Time

Analyzed

10/31/18 00:17

10/31/18 00:17

10/31/18 00:17

MDL

(ug/kg)

0.07

0.05

0.10

Dilution

1

Batch

B8J0820

B8J0820

B8J0820

Prepared

10/30/2018

10/30/2018

10/30/2018

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER14-0.5 Lab ID: 1804036-42

Organochlorine Pesticides by EPA 8081

	D 1	DOI	MDI				D / /T'	
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:17	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/31/18 00:17	
alpha-Chlordane	0.79	1.0	0.12	1	B8J0820	10/30/2018	10/31/18 00:17	J
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/31/18 00:17	
Chlordane [2C]	8.8	8.5	1.1	1	B8J0820	10/30/2018	10/31/18 00:17	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:17	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:17	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:17	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:17	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/31/18 00:17	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:17	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/31/18 00:17	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:17	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:17	
gamma-Chlordane	0.87	1.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:17	J
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:17	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/31/18 00:17	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/31/18 00:17	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/31/18 00:17	
Surrogate: Decachlorobiphenyl	49.8 %	43	3 - 84		B8J0820	10/30/2018	10/31/18 00:17	
Surrogate: Tetrachloro-m-xylene	62.8 %	54	- 118		B8J0820	10/30/2018	10/31/18 00:17	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER14-1.5 Lab ID: 1804036-43

Total Metals by ICP-MS EPA 6020

Analyst: PT

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	13	1.0	0.04	20	B8K0091	11/02/2018	11/04/18 14:52	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan StreetReport To:Ross SurrencyIrvine, CA 92614Reported:11/09/2018

Client Sample ID PER14-3.0 Lab ID: 1804036-44

Total Metals by ICP-MS EPA 6020

Analyst: PT

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	9.9	1.0	0.04	20	B8K0289	11/08/2018	11/08/18 14:57	D1

Surrogate: p-Terphenyl

0%

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER15-0.5 Lab ID: 1804036-45

Fotal Metals by ICP-AES EPA	6010B							Analyst: GC
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	67	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:06	
Total Metals by ICP-MS EPA 6	5020							Analyst: Pl
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	6.1	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:40	D1
STLC Metals by ICP-AES by I	EPA 6010B							Analyst: KEK
	R	esult P	QL				Date/Time	
Analyte	(n	ng/L) (m	ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead		3.7	1.0	20	B8K0286	11/08/2018	11/08/18 15:07	D1
Lead Mercury by AA (Cold Vapor) F	EPA 7471A	3.7	1.0	20	B8K0286	11/08/2018		D1 Analyst: KEK
	EPA 7471A Result	PQL	MDL	20	B8K0286	11/08/2018		
Mercury by AA (Cold Vapor) F				20 Dilution	B8K0286 Batch	11/08/2018 Prepared		
	Result	PQL	MDL				Date/Time	Analyst: KEK
Mercury by AA (Cold Vapor) F	Result (mg/kg)	PQL (mg/kg) 0.10	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Analyst: KEK
Mercury by AA (Cold Vapor) E Analyte Mercury	Result (mg/kg)	PQL (mg/kg) 0.10	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Analyst: KEK Notes
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E	Result (mg/kg) 0.07 PA 8015B (Ma	PQL (mg/kg) 0.10 odified)	MDL (mg/kg) 0.006	Dilution	Batch	Prepared	Date/Time Analyzed 11/01/18 12:16	Analyst: KEK Notes
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte	Result (mg/kg) 0.07 PA 8015B (Meaning Result)	PQL (mg/kg) 0.10 odified) PQL	MDL (mg/kg) 0.006	Dilution 1	Batch B8J0808	Prepared 10/30/2018	Date/Time Analyzed 11/01/18 12:16	Analyst: KEK Notes J Analyst: VW
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E	Result (mg/kg) 0.07 PA 8015B (Moreover) Result (mg/kg)	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0	MDL (mg/kg) 0.006 MDL (mg/kg)	Dilution 1 Dilution	Batch B8J0808 Batch	Prepared 10/30/2018 Prepared	Date/Time Analyzed 11/01/18 12:16 Date/Time Analyzed	Analyst: KEK Notes J Analyst: VW
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene	Result (mg/kg) 0.07 PA 8015B (Moreover Result (mg/kg) ND 96.2 %	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0	MDL (mg/kg) 0.006 MDL (mg/kg) 0.20	Dilution 1 Dilution	Batch Batch Batch B8J0812	Prepared 10/30/2018 Prepared 10/30/2018	Date/Time Analyzed 11/01/18 12:16 Date/Time Analyzed 10/30/18 19:32	Analyst: KEK Notes J Analyst: VW
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene	Result (mg/kg) 0.07 PA 8015B (Moreover Result (mg/kg) ND 96.2 %	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0	MDL (mg/kg) 0.006 MDL (mg/kg) 0.20	Dilution 1 Dilution	Batch Batch Batch B8J0812	Prepared 10/30/2018 Prepared 10/30/2018	Date/Time Analyzed 11/01/18 12:16 Date/Time Analyzed 10/30/18 19:32	Analyst: KEK Notes J Analyst: VW Notes
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte Gasoline Range Organics	Result (mg/kg) 0.07 PA 8015B (Moreover Result (mg/kg) ND 96.2 % 8015B	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0	MDL (mg/kg) 0.006 MDL (mg/kg) 0.20	Dilution 1 Dilution	Batch Batch Batch B8J0812	Prepared 10/30/2018 Prepared 10/30/2018	Date/Time Analyzed 11/01/18 12:16 Date/Time Analyzed 10/30/18 19:32 10/30/18 19:32	Analyst: KEK Notes J Analyst: VW Notes
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA	Result (mg/kg) 0.07 PA 8015B (Market) Result (mg/kg) ND 96.2 % 8015B Result	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0 42	MDL (mg/kg) 0.006 MDL (mg/kg) 0.20	Dilution 1 Dilution 1	Batch Batch B8J0812 B8J0812	Prepared 10/30/2018 Prepared 10/30/2018 10/30/2018	Date/Time Analyzed 11/01/18 12:16 Date/Time Analyzed 10/30/18 19:32 10/30/18 19:32	Analyst: KEK Notes J Analyst: VW Notes Analyst: CR

S4

B8J0859

10/31/2018

11/01/18 00:36

34 - 158

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER15-0.5 Lab ID: 1804036-45

Organochlorine Pesticides by EPA 8081

Analyst: CO/

	Result	PQL	MDL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:27	
4,4′-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:27	
4,4′-DDT	10	2.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:27	
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:27	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/31/18 00:27	
alpha-Chlordane	6.5	1.0	0.12	1	B8J0820	10/30/2018	10/31/18 00:27	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/31/18 00:27	
Chlordane	72	8.5	1.1	1	B8J0820	10/30/2018	10/31/18 00:27	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:27	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:27	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:27	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:27	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/31/18 00:27	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:27	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/31/18 00:27	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:27	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:27	
gamma-Chlordane [2C]	5.8	1.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:27	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:27	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/31/18 00:27	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/31/18 00:27	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/31/18 00:27	
Surrogate: Decachlorobiphenyl	93.0 %	43	3 - 84		B8J0820	10/30/2018	10/31/18 00:27	S10
Surrogate: Tetrachloro-m-xylene	62.3 %	54	- 118		B8J0820	10/30/2018	10/31/18 00:27	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER16-0.5 Lab ID: 1804036-48

Total Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	7.3	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:13	
Total Metals by ICP-MS EPA 6	5020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	3.3	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:40	D1
Mercury by AA (Cold Vapor) E	EPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:18	J
Gasoline Range Organics by E	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 19:50	
Surrogate: 4-Bromofluorobenzene	78.4 %	42	- 153		B8J0812	10/30/2018	10/30/18 19:50	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	3.6	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:52	
		1.0	1.0		D010050	10/21/2010	10/21/19 20.52	
ORO	12	1.0	1.0	1	B8J0859	10/31/2018	10/31/18 20:52	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:37	
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:37	
4,4´-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:37	

Analyst: CO/

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER16-0.5 Lab ID: 1804036-48

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:37	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/31/18 00:37	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/31/18 00:37	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/31/18 00:37	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/31/18 00:37	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:37	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:37	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:37	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:37	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/31/18 00:37	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:37	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/31/18 00:37	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:37	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:37	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:37	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:37	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/31/18 00:37	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/31/18 00:37	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/31/18 00:37	
Surrogate: Decachlorobiphenyl	50.9 %	43	3 - 84		B8J0820	10/30/2018	10/31/18 00:37	
Surrogate: Tetrachloro-m-xylene	69.6 %	54	- 118		B8J0820	10/30/2018	10/31/18 00:37	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER17-0.5 Lab ID: 1804036-51

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.0	1.0	0.18	1	B8J0805	10/30/2018	10/31/18 16:14	
Гоtal Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	2.9	1.0	0.04	20	B8K0006	10/31/2018	11/01/18 12:41	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.02	0.10	0.006	1	B8J0808	10/30/2018	11/01/18 12:20	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 20:09	
Surrogate: 4-Bromofluorobenzene	88.8 %	42	- 153		B8J0812	10/30/2018	10/30/18 20:09	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	9.1	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:08	
ORO	24	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:08	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4´-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:48	_
4,4´-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:48	
4,4'-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:48	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER17-0.5 Lab ID: 1804036-51

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:48	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/31/18 00:48	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/31/18 00:48	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/31/18 00:48	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/31/18 00:48	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:48	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:48	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:48	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:48	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/31/18 00:48	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:48	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/31/18 00:48	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:48	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:48	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:48	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:48	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/31/18 00:48	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/31/18 00:48	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/31/18 00:48	
Surrogate: Decachlorobiphenyl [2C]	57.0 %	43	3 - 84		B8J0820	10/30/2018	10/31/18 00:48	
Surrogate: Tetrachloro-m-xylene	58.6 %	54	- 118		B8J0820	10/30/2018	10/31/18 00:48	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER18-0.5 Lab ID: 1804036-54

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	3.6	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:45	1,000
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	2.0	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:44	D1
Mercury by AA (Cold Vapor) E	PA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:26	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8K0002	11/01/2018	11/01/18 09:47	
Surrogate: 4-Bromofluorobenzene	104 %	42	- 153		B8K0002	11/01/2018	11/01/18 09:47	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	8.9	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 04:50	

Organochlorine Pesticides by EPA 8081

48.1 %

ORO

Surrogate: p-Terphenyl

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:58	
4,4'-DDE	ND	2.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:58	
4,4´-DDT	ND	2.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:58	

B8J0879

B8J0879

10/31/2018

10/31/2018

11/01/18 04:50

11/01/18 04:50

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER18-0.5 Lab ID: 1804036-54

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:58	
alpha-BHC	ND	1.0	0.11	1	B8J0820	10/30/2018	10/31/18 00:58	
alpha-Chlordane	ND	1.0	0.12	1	B8J0820	10/30/2018	10/31/18 00:58	
beta-BHC	ND	1.0	0.06	1	B8J0820	10/30/2018	10/31/18 00:58	
Chlordane	ND	8.5	1.1	1	B8J0820	10/30/2018	10/31/18 00:58	
delta-BHC	ND	1.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:58	
Dieldrin	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:58	
Endosulfan I	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:58	
Endosulfan II	ND	2.0	0.03	1	B8J0820	10/30/2018	10/31/18 00:58	
Endosulfan sulfate	ND	2.0	0.08	1	B8J0820	10/30/2018	10/31/18 00:58	
Endrin	ND	2.0	0.04	1	B8J0820	10/30/2018	10/31/18 00:58	
Endrin aldehyde	ND	2.0	0.31	1	B8J0820	10/30/2018	10/31/18 00:58	
Endrin ketone	ND	2.0	0.13	1	B8J0820	10/30/2018	10/31/18 00:58	
gamma-BHC	ND	1.0	0.10	1	B8J0820	10/30/2018	10/31/18 00:58	
gamma-Chlordane	ND	1.0	0.07	1	B8J0820	10/30/2018	10/31/18 00:58	
Heptachlor	ND	1.0	0.05	1	B8J0820	10/30/2018	10/31/18 00:58	
Heptachlor epoxide	ND	1.0	0.09	1	B8J0820	10/30/2018	10/31/18 00:58	
Methoxychlor	ND	5.0	0.18	1	B8J0820	10/30/2018	10/31/18 00:58	
Toxaphene	ND	50	4.7	1	B8J0820	10/30/2018	10/31/18 00:58	
Surrogate: Decachlorobiphenyl	82.0 %	43	3 - 84		B8J0820	10/30/2018	10/31/18 00:58	
Surrogate: Tetrachloro-m-xylene	79.6 %	54	- 118		B8J0820	10/30/2018	10/31/18 00:58	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER19-0.5 Lab ID: 1804036-57

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	1.8	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:50	
Total Metals by ICP-MS EPA 6	5020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	ND	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:49	D1
Mercury by AA (Cold Vapor) E	EPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:39	J
Gasoline Range Organics by E	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 20:46	
Surrogate: 4-Bromofluorobenzene	112 %	42	- 153		B8J0812	10/30/2018	10/30/18 20:46	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Analyte	(0 0)							
	5.6	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 04:16	
		1.0 1.0	1.0 1.0	1 1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 04:16 11/01/18 04:16	
DRO	5.6	1.0						

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 15:34	
4,4'-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 15:34	
4,4'-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 15:34	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER19-0.5 Lab ID: 1804036-57

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 15:34	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 15:34	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 15:34	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 15:34	
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 15:34	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 15:34	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 15:34	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 15:34	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 15:34	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 15:34	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 15:34	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 15:34	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 15:34	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 15:34	
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 15:34	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 15:34	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 15:34	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 15:34	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 15:34	
Surrogate: Decachlorobiphenyl	67.9 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 15:34	
Surrogate: Tetrachloro-m-xylene	59.3 %	54	- 118		B8K0014	11/01/2018	11/01/18 15:34	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER20-0.5 Lab ID: 1804036-60

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	7.8	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:51	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.0	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:50	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.03	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:41	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 21:04	
Surrogate: 4-Bromofluorobenzene	112 %	42	- 153		B8J0812	10/30/2018	10/30/18 21:04	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
			1.0	1	D010070	10/31/2018	11/01/10 07 00	
DRO	6.4	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:00	
DRO ORO	6.4	1.0	1.0	1	B8J0879 B8J0879	10/31/2018	11/01/18 06:00	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	0.13	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 10:50	J
4,4´-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 10:50	
4,4'-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 10:50	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER20-0.5 Lab ID: 1804036-60

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 10:50	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 10:50	
alpha-Chlordane [2C]	0.12	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 10:50	J
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 10:50	
Chlordane	1.4	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 10:50	J
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 10:50	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 10:50	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 10:50	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 10:50	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 10:50	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 10:50	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 10:50	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 10:50	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 10:50	
gamma-Chlordane	0.09	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 10:50	J
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 10:50	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 10:50	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 10:50	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 10:50	
Surrogate: Decachlorobiphenyl	51.2 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 10:50	
Surrogate: Tetrachloro-m-xylene	56.2 %	54	- 118		B8K0014	11/01/2018	11/01/18 10:50	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER21-0.5 Lab ID: 1804036-63

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.6	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:52	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	2.3	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:50	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:43	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 21:23	
Surrogate: 4-Bromofluorobenzene	116 %	42	- 153		B8J0812	10/30/2018	10/30/18 21:23	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
DRO	11	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:42	
ORO	18	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:42	

Surrogate: p-Terphenyl

67.0 %

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	0.15	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:01	J
4,4´-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:01	
4,4′-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:01	

B8J0879

10/31/2018

11/01/18 05:42

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER21-0.5 Lab ID: 1804036-63

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:01	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 11:01	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 11:01	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 11:01	
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 11:01	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:01	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:01	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:01	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:01	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 11:01	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:01	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 11:01	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:01	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:01	
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:01	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:01	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 11:01	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 11:01	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 11:01	
Surrogate: Decachlorobiphenyl	42.5 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 11:01	S10
Surrogate: Tetrachloro-m-xylene	56.8 %	54	- 118		B8K0014	11/01/2018	11/01/18 11:01	

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 11:37	
Surrogate: Decachlorobiphenyl	55.4 %	43 - 84		B8K0014	11/01/2018	11/01/18 11:37	
Surrogate: Tetrachloro-m-xylene	71.8 %	54 - 118		B8K0014	11/01/2018	11/01/18 11:37	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

> **Client Sample ID DUP-3** Lab ID: 1804036-66

Total Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	34	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:53	

Total Metals by ICP-MS EPA 6020

Analyst: PT

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Arsenic	3.8	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:51	D1	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:45	ĭ	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
	Result	PQL	MDL				Date/Time		

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 21:41	
Surrogate: 4-Bromofluorobenzene	92.7 %	42	- 153		B8J0812	10/30/2018	10/30/18 21:41	

Diesel Range Organics by EPA 8015B

Analyst: CR

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	500	10	10	10	B8J0879	10/31/2018	11/01/18 07:44	
ORO	830	10	10	10	B8J0879	10/31/2018	11/01/18 07:44	
Surrogate: p-Terphenyl	147 %	34	- 158	_	B8J0879	10/31/2018	11/01/18 07:44	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:11	
4,4′-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:11	
4,4′-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:11	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID DUP-3 Lab ID: 1804036-66

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyta	Result	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Dalcii	ricpateu	Amaryzeu	110168
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:11	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 11:11	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 11:11	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 11:11	
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 11:11	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:11	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:11	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:11	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:11	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 11:11	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:11	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 11:11	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:11	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:11	
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:11	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:11	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 11:11	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 11:11	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 11:11	
Surrogate: Decachlorobiphenyl [2C]	83.6 %	43	- 84		B8K0014	11/01/2018	11/01/18 11:11	
Surrogate: Tetrachloro-m-xylene	70.4 %	54	- 118		B8K0014	11/01/2018	11/01/18 11:11	

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 11:56	
Surrogate: Decachlorobiphenyl	53.1 %	43 - 84		B8K0014	11/01/2018	11/01/18 11:56	
Surrogate: Tetrachloro-m-xylene	77.6 %	54 - 118		B8K0014	11/01/2018	11/01/18 11:56	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER22-0.5 Lab ID: 1804036-67

6010B							Analyst: GO
Result	PQL	MDL				Date/Time	
(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
8.2	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:57	
5020							Analyst: PT
Result	PQL	MDL				Date/Time	
(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
3.8	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:52	D1
EPA 7471A							Analyst: KEK
Result	PQL	MDL				Date/Time	
(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:47	J
PA 8015B (M	odified)						Analyst: VW
Result	PQL	MDL				Date/Time	
(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 22:00	
110 %	42	- 153		B8J0812	10/30/2018	10/30/18 22:00	
8015B							Analyst: CR
Result	PQL	MDL				Date/Time	
(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
74	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:52	
	1.0 1.0	1.0 1.0	1 1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 06:52 11/01/18 06:52	
	Result (mg/kg) 8.2 6020 Result (mg/kg) 3.8 EPA 7471A Result (mg/kg) 0.05 PA 8015B (Moreover) ND 110 % 8015B Result	Result (mg/kg) PQL (mg/kg) 8.2 1.0 6020 Result PQL (mg/kg) 3.8 1.0 CPA 7471A PQL (mg/kg) Result PQL (mg/kg) 0.05 0.05 0.10 PA 8015B (Modified) Result PQL (mg/kg) (mg/kg) ND 1.0 110 % 8015B Result PQL	Result (mg/kg) PQL (mg/kg) MDL (mg/kg) 8.2 1.0 0.18 6020 Result PQL MDL (mg/kg) MDL (mg/kg) 3.8 1.0 0.04 CPA 7471A Result PQL MDL (mg/kg) MDL (mg/kg) 0.05 0.10 0.006 PA 8015B (Modified) Result PQL MDL (mg/kg) MDL (mg/kg) ND 1.0 0.20 110 % 42 - 153 8015B Result PQL MDL Result PQL MDL	Result (mg/kg) PQL (mg/kg) MDL (mg/kg) Dilution 8.2 1.0 0.18 1 6020 Result PQL MDL (mg/kg) (mg/kg) PQL (mg/kg) Dilution 3.8 1.0 0.04 20 CPA 7471A Result PQL MDL (mg/kg) (mg/kg) Dilution 0.05 0.10 0.006 1 PA 8015B (Modified) Result PQL MDL (mg/kg) (mg/kg) Dilution ND 1.0 0.20 1 110 % 42 - 153 8015B Result PQL MDL MDL	Result (mg/kg)	Result (mg/kg)	Result (mg/kg)

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:22	_
4,4´-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:22	
4,4'-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:22	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER22-0.5 Lab ID: 1804036-67

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
								0.00
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:22	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 11:22	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 11:22	
beta-BHC	0.70	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 11:22	J
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 11:22	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:22	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:22	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:22	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:22	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 11:22	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:22	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 11:22	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:22	
gamma-BHC [2C]	0.37	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:22	J
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:22	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:22	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 11:22	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 11:22	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 11:22	
Surrogate: Decachlorobiphenyl	66.7 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 11:22	
Surrogate: Tetrachloro-m-xylene	79.4 %	54	- 118		B8K0014	11/01/2018	11/01/18 11:22	
·								

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 12:15	
Surrogate: Decachlorobiphenyl	54.6 %	43 - 84		B8K0014	11/01/2018	11/01/18 12:15	
Surrogate: Tetrachloro-m-xylene	110 %	54 - 118		B8K0014	11/01/2018	11/01/18 12:15	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan StreetReport To:Ross SurrencyIrvine, CA 92614Reported:11/09/2018

Client Sample ID PER22-1.5 Lab ID: 1804036-68

Diesel Range Organics by EPA 8015B

Analyst: CR

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	7.8	1.0	1.0	1	B8K0152	11/05/2018	11/06/18 12:27	
ORO	10	1.0	1.0	1	B8K0152	11/05/2018	11/06/18 12:27	
Surrogate: p-Terphenyl	72.1 %	34	- 158		B8K0152	11/05/2018	11/06/18 12:27	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

> **Client Sample ID PER23-0.5** Lab ID: 1804036-70

Total Metal	s by	ICP-AES	EPA	6010B
-------------	------	---------	------------	-------

Analyst: GO

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Lead	3.0	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:58		

Total Metals by ICP-MS EPA 6020

Analyst: PT

	Result	PQL	MDL				Date/Time		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Arsenic	3.2	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:53	D1	

Mercury by AA (Cold Vapor) EPA 7471A

Analyst: KEK

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Mercury	0.04	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:48	J	

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 22:18	
Surrogate: 4-Bromofluorobenzene	115 %	42	- 153		B8J0812	10/30/2018	10/30/18 22:18	

Diesel Range Organics by EPA 8015B

Analyst: CR

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	13	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:25	
ORO	22	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 05:25	
Surrogate: n-Ternhenyl	63.0 %	34	1 - 158		B810879	10/31/2018	11/01/18 05:25	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:32	
4,4´-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:32	
4,4′-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:32	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER23-0.5 Lab ID: 1804036-70

Organochlorine Pesticides by EPA 8081

	Result	PQL	MDL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:32	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 11:32	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 11:32	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 11:32	
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 11:32	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:32	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:32	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:32	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:32	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 11:32	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:32	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 11:32	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:32	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:32	
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:32	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:32	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 11:32	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 11:32	
Гохарнепе	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 11:32	
Surrogate: Decachlorobiphenyl	85.7 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 11:32	S10
Surrogate: Tetrachloro-m-xylene	64.9 %	54	- 118		B8K0014	11/01/2018	11/01/18 11:32	

Surrogate: p-Terphenyl

38.2 %

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER24-0.5 Lab ID: 1804036-73

Fotal Metals by ICP-AES EPA	6010B							Analyst: GC
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	64	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 10:59	
Total Metals by ICP-MS EPA 6	6020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.1	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:54	D1
STLC Metals by ICP-AES by I	EPA 6010B							Analyst: KEK
	R	esult F	QL				Date/Time	
Analyte	(n	ng/L) (m	ng/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead		8.3	1.0	20	B8K0286	11/08/2018	11/08/18 15:11	D1
Lead Mercury by AA (Cold Vapor) F	EPA 7471A	8.3	1.0	20	B8K0286	11/08/2018		D1 Analyst: KEK
	EPA 7471A Result	8.3 PQL	MDL	20	B8K0286	11/08/2018		
				20 Dilution	B8K0286 Batch	11/08/2018 Prepared		
Mercury by AA (Cold Vapor) F	Result	PQL	MDL				Date/Time	Analyst: KEK
Mercury by AA (Cold Vapor) E Analyte Mercury	Result (mg/kg)	PQL (mg/kg) 0.10	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Analyst: KEK Notes
Mercury by AA (Cold Vapor) E Analyte Mercury	Result (mg/kg)	PQL (mg/kg) 0.10	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Analyst: KEK Notes
Mercury by AA (Cold Vapor) E Analyte Mercury	Result (mg/kg) 0.06 PA 8015B (Me	PQL (mg/kg) 0.10 odified)	MDL (mg/kg) 0.006	Dilution	Batch	Prepared	Date/Time Analyzed 11/01/18 12:50	Analyst: KEK Notes
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte	Result (mg/kg) 0.06 PA 8015B (Meaning Result	PQL (mg/kg) 0.10 odified) PQL	MDL (mg/kg) 0.006	Dilution 1	Batch B8J0809	Prepared 10/30/2018	Date/Time Analyzed 11/01/18 12:50 Date/Time	Analyst: KEK Notes J Analyst: VW
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E	Result (mg/kg) 0.06 PA 8015B (Moreover) Result (mg/kg)	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0	MDL (mg/kg) 0.006 MDL (mg/kg)	Dilution 1 Dilution	Batch B8J0809 Batch	Prepared 10/30/2018 Prepared	Date/Time Analyzed 11/01/18 12:50 Date/Time Analyzed	Analyst: KEK Notes J Analyst: VW
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene	Result (mg/kg) 0.06 PA 8015B (Moreover) Result (mg/kg) ND 86.1 %	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0	MDL (mg/kg) 0.006 MDL (mg/kg) 0.20	Dilution 1 Dilution	Batch B8J0809 Batch B8J0812	Prepared 10/30/2018 Prepared 10/30/2018	Date/Time Analyzed 11/01/18 12:50 Date/Time Analyzed 10/30/18 22:37	Analyst: KEK Notes J Analyst: VW
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene	Result (mg/kg) 0.06 PA 8015B (Moreover) Result (mg/kg) ND 86.1 %	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0	MDL (mg/kg) 0.006 MDL (mg/kg) 0.20	Dilution 1 Dilution	Batch B8J0809 Batch B8J0812	Prepared 10/30/2018 Prepared 10/30/2018 10/30/2018	Date/Time Analyzed 11/01/18 12:50 Date/Time Analyzed 10/30/18 22:37	Analyst: KEK Notes J Analyst: VW Notes
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte Gasoline Range Organics	Result (mg/kg) 0.06 PA 8015B (Moreover) Result (mg/kg) ND 86.1 %	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0	MDL (mg/kg) 0.006 MDL (mg/kg) 0.20	Dilution 1 Dilution	Batch B8J0809 Batch B8J0812	Prepared 10/30/2018 Prepared 10/30/2018	Date/Time Analyzed 11/01/18 12:50 Date/Time Analyzed 10/30/18 22:37 10/30/18 22:37	Analyst: KEK Notes J Analyst: VW Notes
Mercury by AA (Cold Vapor) E Analyte Mercury Gasoline Range Organics by E Analyte Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA	Result (mg/kg) 0.06 PA 8015B (Moreover) Result (mg/kg) ND 86.1 % 8015B Result	PQL (mg/kg) 0.10 odified) PQL (mg/kg) 1.0 42	MDL (mg/kg) 0.006 MDL (mg/kg) 0.20	Dilution 1 Dilution 1	Batch B8J0809 Batch B8J0812 B8J0812	Prepared 10/30/2018 Prepared 10/30/2018 10/30/2018	Date/Time Analyzed 11/01/18 12:50 Date/Time Analyzed 10/30/18 22:37 10/30/18 22:37	Analyst: KEK Notes J Analyst: VW Notes Analyst: CR

11/01/18 08:02

B8J0879

10/31/2018

34 - 158

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER24-0.5 Lab ID: 1804036-73

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4´-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:43	
4,4′-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:43	
4,4′-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:43	
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:43	
alpha-BHC	1.7	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 11:43	
alpha-Chlordane	2.7	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 11:43	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 11:43	
Chlordane [2C]	27	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 11:43	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:43	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:43	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:43	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:43	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 11:43	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:43	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 11:43	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:43	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:43	
gamma-Chlordane	2.4	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:43	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:43	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 11:43	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 11:43	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 11:43	
Surrogate: Decachlorobiphenyl	43.9 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 11:43	
Surrogate: Tetrachloro-m-xylene	74.3 %	54	- 118		B8K0014	11/01/2018	11/01/18 11:43	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER24-0.5 Lab ID: 1804036-73

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 12:33	
Surrogate: Decachlorobiphenyl	53.4 %	43 - 84		B8K0014	11/01/2018	11/01/18 12:33	
Surrogate: Tetrachloro-m-xylene	80.7 %	54 - 118		B8K0014	11/01/2018	11/01/18 12:33	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER25-0.5 Lab ID: 1804036-76

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	37	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:01	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.6	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:55	D1
Mercury by AA (Cold Vapor) E	PA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:52	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 22:56	
Surrogate: 4-Bromofluorobenzene	111 %	42	- 153		B8J0812	10/30/2018	10/30/18 22:56	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes

Organochlorine Pesticides by EPA 8081

20

62.2 %

ORO

Surrogate: p-Terphenyl

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:53	
4,4'-DDE [2C]	1.8	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:53	J
4,4´-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:53	

1.0

34 - 158

10/31/2018

10/31/2018

B8J0879

B8J0879

11/01/18 07:27

11/01/18 07:27

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER25-0.5 Lab ID: 1804036-76

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:53	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 11:53	
alpha-Chlordane	0.85	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 11:53	J
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 11:53	
Chlordane [2C]	8.8	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 11:53	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:53	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:53	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:53	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 11:53	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 11:53	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 11:53	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 11:53	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 11:53	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 11:53	
gamma-Chlordane	0.69	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 11:53	J
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 11:53	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 11:53	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 11:53	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 11:53	
Surrogate: Decachlorobiphenyl	44.4 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 11:53	
Surrogate: Tetrachloro-m-xylene	62.2 %	54	- 118		B8K0014	11/01/2018	11/01/18 11:53	

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 12:52	
Surrogate: Decachlorobiphenyl	56.5 %	43 - 84	_	B8K0014	11/01/2018	11/01/18 12:52	
Surrogate: Tetrachloro-m-xylene	81.2 %	54 - 118		B8K0014	11/01/2018	11/01/18 12:52	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER26-0.5 Lab ID: 1804036-79

Total Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.9	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:02	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	4.4	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:55	D1
Mercury by AA (Cold Vapor) E	PA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.04	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 12:58	J
Gasoline Range Organics by El	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 23:14	
Surrogate: 4-Bromofluorobenzene	114 %	42	- 153		B8J0812	10/30/2018	10/30/18 23:14	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
						_		
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes

Organochlorine Pesticides by EPA 8081

ORO

Surrogate: p-Terphenyl

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 12:04	
4,4´-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 12:04	
4,4′-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:04	

B8J0879

B8J0879

10/31/2018

10/31/2018

11/01/18 07:09

11/01/18 07:09

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

> **Client Sample ID PER26-0.5** Lab ID: 1804036-79

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 12:04	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 12:04	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 12:04	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 12:04	
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 12:04	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 12:04	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 12:04	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:04	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 12:04	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 12:04	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 12:04	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 12:04	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 12:04	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:04	
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 12:04	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 12:04	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 12:04	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 12:04	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 12:04	
Surrogate: Decachlorobiphenyl	37.2 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 12:04	S10
Surrogate: Tetrachloro-m-xylene	51.3 %	54	- 118		B8K0014	11/01/2018	11/01/18 12:04	S10

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER27-0.5 Lab ID: 1804036-82

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	2.3	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:03	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	7.1	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:56	D1
Mercury by AA (Cold Vapor) F	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.05	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 13:00	J
Gasoline Range Organics by E	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 23:33	
Surrogate: 4-Bromofluorobenzene	105 %	42	- 153		B8J0812	10/30/2018	10/30/18 23:33	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
		1.0	1.0		D010070	10/21/2010	11/01/10 06 17	
DRO	4.8	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 06:17	

Organochlorine Pesticides by EPA 8081

Surrogate: p-Terphenyl

68.3 %

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 12:14	
4,4´-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 12:14	
4,4´-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:14	

B8J0879

10/31/2018

11/01/18 06:17

34 - 158

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER27-0.5 Lab ID: 1804036-82

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Tillaryte	(ug/Ng)	(ug/Kg)	(ug/Kg)	Dilution	Daten	Trepared	7 mary zea	110103
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 12:14	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 12:14	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 12:14	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 12:14	
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 12:14	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 12:14	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 12:14	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:14	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 12:14	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 12:14	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 12:14	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 12:14	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 12:14	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:14	
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 12:14	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 12:14	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 12:14	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 12:14	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 12:14	
Surrogate: Decachlorobiphenyl	48.2 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 12:14	
Surrogate: Tetrachloro-m-xylene	49.3 %	54	- 118		B8K0014	11/01/2018	11/01/18 12:14	S10

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 13:11	
Surrogate: Decachlorobiphenyl	54.0 %	43 - 84		B8K0014	11/01/2018	11/01/18 13:11	
Surrogate: Tetrachloro-m-xylene	76.4 %	54 - 118		B8K0014	11/01/2018	11/01/18 13:11	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER28-0.5 Lab ID: 1804036-85

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	1.5	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:04	
Total Metals by ICP-MS EPA 6	020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	7.5	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 12:59	D1
Mercury by AA (Cold Vapor) E	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 13:02	J
Gasoline Range Organics by E	PA 8015B (M	odified)						Analyst: VW
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	0.20	1	B8J0812	10/30/2018	10/30/18 23:51	
Surrogate: 4-Bromofluorobenzene	109 %	42	- 153		B8J0812	10/30/2018	10/30/18 23:51	
Diesel Range Organics by EPA	8015B							Analyst: CR
	Result	PQL	MDL				Date/Time	
	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Analyte	(mg/kg)	\ C C/						
	1.2	1.0	1.0	1	B8J0879	10/31/2018	11/01/18 03:59	
DRO ORO			1.0 1.0	1 1	B8J0879 B8J0879	10/31/2018 10/31/2018	11/01/18 03:59 11/01/18 03:59	

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	0.10	2.0	0.07	1	B8K0014	11/01/2018	11/01/18 12:25	J
4,4´-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/01/18 12:25	
4,4'-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:25	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER28-0.5 Lab ID: 1804036-85

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
That ye	(ug/Ng)	(ug/Ng)	(ug/Ng)	Dilution	Daten	Troparcu	2 mary 200	110003
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/01/18 12:25	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/01/18 12:25	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/01/18 12:25	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/01/18 12:25	
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/01/18 12:25	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/01/18 12:25	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 12:25	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:25	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/01/18 12:25	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/01/18 12:25	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/01/18 12:25	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/01/18 12:25	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/01/18 12:25	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/01/18 12:25	
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/01/18 12:25	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/01/18 12:25	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/01/18 12:25	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/01/18 12:25	
Toxaphene	ND	50	4.7	1	B8K0014	11/01/2018	11/01/18 12:25	
Surrogate: Decachlorobiphenyl	32.4 %	43	3 - 84		B8K0014	11/01/2018	11/01/18 12:25	S10
Surrogate: Tetrachloro-m-xylene	47.4 %	54	- 118		B8K0014	11/01/2018	11/01/18 12:25	S10

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Aroclor 1221	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Aroclor 1232	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Aroclor 1242	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Aroclor 1248	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Aroclor 1254	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Aroclor 1260	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Aroclor 1262	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Aroclor 1268	ND	16	1	B8K0014	11/01/2018	11/01/18 13:47	
Surrogate: Decachlorobiphenyl	59.9 %	43 - 84		B8K0014	11/01/2018	11/01/18 13:47	
Surrogate: Tetrachloro-m-xylene	68.2 %	54 - 118		B8K0014	11/01/2018	11/01/18 13:47	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER29-0.5 Lab ID: 1804036-88

Fotal Metals by ICP-AES EPA	6010B							Analyst: GO
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	2.1	1.0	0.18	1	B8J0806	10/30/2018	10/31/18 11:05	
Total Metals by ICP-MS EPA 6	5020							Analyst: PT
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	6.6	1.0	0.04	20	B8K0007	10/31/2018	11/01/18 13:00	D1
Mercury by AA (Cold Vapor) F	CPA 7471A							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	0.06	0.10	0.006	1	B8J0809	10/30/2018	11/01/18 13:04	J
Gasoline Range Organics by E	PA 8015B (M	odified)						Analyst: VW
	Result		MDI				Date/Time	
	Resuit	PQL	MDL				Date/ Time	
Analyte	(mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Analyte Gasoline Range Organics				Dilution 1	Batch B8J0812	Prepared 10/30/2018		Notes
	(mg/kg)	(mg/kg)	(mg/kg)			-	Analyzed	Notes
Gasoline Range Organics	(mg/kg) ND 94.8 %	(mg/kg)	(mg/kg)		B8J0812	10/30/2018	Analyzed 10/31/18 00:10	
Gasoline Range Organics Surrogate: 4-Bromofluorobenzene	(mg/kg) ND 94.8 %	(mg/kg)	(mg/kg)		B8J0812	10/30/2018	Analyzed 10/31/18 00:10	Notes Analyst: CR
Gasoline Range Organics Surrogate: 4-Bromofluorobenzene	(mg/kg) ND 94.8 % 8015B	(mg/kg) 1.0 42	(mg/kg) 0.20 - 153		B8J0812	10/30/2018	Analyzed 10/31/18 00:10 10/31/18 00:10	
Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA	(mg/kg) ND 94.8 % 8015B Result	(mg/kg) 1.0 42	(mg/kg) 0.20 - 153	1	B8J0812 B8J0812	10/30/2018	Analyzed 10/31/18 00:10 10/31/18 00:10 Date/Time	Analyst: CR
Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA Analyte	(mg/kg) ND 94.8 % 8015B Result (mg/kg)	(mg/kg) 1.0 42 PQL (mg/kg)	(mg/kg) 0.20 - 153 MDL (mg/kg)	1 Dilution	B8J0812 B8J0812	10/30/2018 10/30/2018 Prepared	Analyzed 10/31/18 00:10 10/31/18 00:10 Date/Time Analyzed	Analyst: CR
Gasoline Range Organics Surrogate: 4-Bromofluorobenzene Diesel Range Organics by EPA Analyte DRO	(mg/kg) ND 94.8 % 8015B Result (mg/kg) 2.8	PQL (mg/kg) 1.0 1.0 1.0 1.0	(mg/kg) 0.20 - 153 MDL (mg/kg) 1.0	1 Dilution	B8J0812 B8J0812 Batch B8J0879	10/30/2018 10/30/2018 Prepared 10/31/2018	Analyzed 10/31/18 00:10 10/31/18 00:10 Date/Time Analyzed 11/01/18 06:34	Analyst:

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4´-DDD	ND	2.0	0.07	1	B8K0014	11/01/2018	11/02/18 11:29	_
4,4´-DDE	ND	2.0	0.05	1	B8K0014	11/01/2018	11/02/18 11:29	
4,4´-DDT	ND	2.0	0.10	1	B8K0014	11/01/2018	11/02/18 11:29	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Client Sample ID PER29-0.5 Lab ID: 1804036-88

Organochlorine Pesticides by EPA 8081

	Result	PQL	MDL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Aldrin	ND	1.0	0.04	1	B8K0014	11/01/2018	11/02/18 11:29	
alpha-BHC	ND	1.0	0.11	1	B8K0014	11/01/2018	11/02/18 11:29	
alpha-Chlordane	ND	1.0	0.12	1	B8K0014	11/01/2018	11/02/18 11:29	
beta-BHC	ND	1.0	0.06	1	B8K0014	11/01/2018	11/02/18 11:29	
Chlordane	ND	8.5	1.1	1	B8K0014	11/01/2018	11/02/18 11:29	
delta-BHC	ND	1.0	0.03	1	B8K0014	11/01/2018	11/02/18 11:29	
Dieldrin	ND	2.0	0.13	1	B8K0014	11/01/2018	11/02/18 11:29	
Endosulfan I	ND	1.0	0.10	1	B8K0014	11/01/2018	11/02/18 11:29	
Endosulfan II	ND	2.0	0.03	1	B8K0014	11/01/2018	11/02/18 11:29	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0014	11/01/2018	11/02/18 11:29	
Endrin	ND	2.0	0.04	1	B8K0014	11/01/2018	11/02/18 11:29	
Endrin aldehyde	ND	2.0	0.31	1	B8K0014	11/01/2018	11/02/18 11:29	
Endrin ketone	ND	2.0	0.13	1	B8K0014	11/01/2018	11/02/18 11:29	
gamma-BHC	ND	1.0	0.10	1	B8K0014	11/01/2018	11/02/18 11:29	
gamma-Chlordane	ND	1.0	0.07	1	B8K0014	11/01/2018	11/02/18 11:29	
Heptachlor	ND	1.0	0.05	1	B8K0014	11/01/2018	11/02/18 11:29	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0014	11/01/2018	11/02/18 11:29	
Methoxychlor	ND	5.0	0.18	1	B8K0014	11/01/2018	11/02/18 11:29	
Гохарһепе	ND	50	4.7	1	B8K0014	11/01/2018	11/02/18 11:29	
Surrogate: Decachlorobiphenyl	55.3 %	43	3 - 84		B8K0014	11/01/2018	11/02/18 11:29	
Surrogate: Tetrachloro-m-xylene	42.2 %	54	- 118		B8K0014	11/01/2018	11/02/18 11:29	S10

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

> **Client Sample ID EB-1** Lab ID: 1804036-91

Total Meta	ıle hv	ICP-	A E.S.	EPA	6010R

Total Metals by ICP-AES EPA	Result PQL MDL Date/Tim							Analyst: KEK
	Result	PQL	MDL				Date/Time	
Analyte	(mg/L)	(mg/L)	(mg/L)	Dilution	Batch	Prepared	Analyzed	Notes
Lead	ND	0.0050	0 0047	1	B8K0013	11/01/2018	11/01/18 16:18	

Total Metals by ICP-MS EPA 6020

Analyte	Result (ug/L)	PQL (ug/L)	MDL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	ND	1.0	0.39	1	B8J0802	10/30/2018	10/30/18 15:03	

Mercury by AA (Cold Vapor) EPA 7470A

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B8K0015	11/01/2018	11/01/18 16:41	

Gasoline Range Organics by EPA 8015B (Modified)

Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	0.20	0.05	1	B8J0827	10/31/2018	10/31/18 12:21	
Surrogate: 4-Bromofluorobenzene	106 %	70	- 130		B8J0827	10/31/2018	10/31/18 12:21	

Diesel Range Organics by EPA 8015B

Diesel Range Organics by EPA 8015B										
Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes		
DRO	0.12	0.05	0.05	1	B8K0020	11/01/2018	11/01/18 12:30	_		
ORO	0.11	0.05	0.05	1	B8K0020	11/01/2018	11/01/18 12:30			
Surrogate: p-Terphenyl	94.2 %	32	- 169		B8K0020	11/01/2018	11/01/18 12:30			

Organochlorine Pesticides by EPA 8081

Analyte	Result (ug/L)	PQL (ug/L)	MDL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	0.05	0.006	1	B8K0028	11/01/2018	11/02/18 11:19	
4,4´-DDE	ND	0.05	0.005	1	B8K0028	11/01/2018	11/02/18 11:19	
4,4′-DDT	ND	0.05	0.01	1	B8K0028	11/01/2018	11/02/18 11:19	

Analyst: CO/

Analyst: PT

Analyst: KEK

Analyst: VW

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

> **Client Sample ID EB-1** Lab ID: 1804036-91

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyta	Result	PQL (ug/L)	MDL (ug/L)	Dilution	Dotah	Drangrad	Date/Time	Notes
Analyte	(ug/L)	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
Aldrin	ND	0.02	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
alpha-BHC	ND	0.02	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
alpha-Chlordane	ND	0.02	0.003	1	B8K0028	11/01/2018	11/02/18 11:19	
beta-BHC	ND	0.02	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
Chlordane	ND	0.25	0.03	1	B8K0028	11/01/2018	11/02/18 11:19	
delta-BHC	ND	0.02	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
Dieldrin	ND	0.05	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
Endosulfan I	ND	0.02	0.005	1	B8K0028	11/01/2018	11/02/18 11:19	
Endosulfan II	ND	0.05	0.009	1	B8K0028	11/01/2018	11/02/18 11:19	
Endosulfan sulfate	ND	0.05	0.01	1	B8K0028	11/01/2018	11/02/18 11:19	
Endrin	ND	0.05	0.005	1	B8K0028	11/01/2018	11/02/18 11:19	
Endrin aldehyde	ND	0.05	0.003	1	B8K0028	11/01/2018	11/02/18 11:19	
Endrin ketone	ND	0.05	0.003	1	B8K0028	11/01/2018	11/02/18 11:19	
gamma-BHC	ND	0.02	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
gamma-Chlordane	ND	0.02	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
Heptachlor	ND	0.02	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
Heptachlor epoxide	ND	0.02	0.002	1	B8K0028	11/01/2018	11/02/18 11:19	
Methoxychlor	ND	0.25	0.008	1	B8K0028	11/01/2018	11/02/18 11:19	
Toxaphene	ND	2.5	0.23	1	B8K0028	11/01/2018	11/02/18 11:19	
Surrogate: Decachlorobiphenyl	74.2 %	8 -	- 128		B8K0028	11/01/2018	11/02/18 11:19	
Surrogate: Tetrachloro-m-xylene	71.6 %	32	- 126		B8K0028	11/01/2018	11/02/18 11:19	

Polychlorinated Biphenyls by EPA 8082

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	0.50	1	B8K0028	11/01/2018	11/01/18 16:56	
Aroclor 1221	ND	1.0	1	B8K0028	11/01/2018	11/01/18 16:56	
Aroclor 1232	ND	0.50	1	B8K0028	11/01/2018	11/01/18 16:56	
Aroclor 1242	ND	0.50	1	B8K0028	11/01/2018	11/01/18 16:56	
Aroclor 1248	ND	0.50	1	B8K0028	11/01/2018	11/01/18 16:56	
Aroclor 1254	ND	0.50	1	B8K0028	11/01/2018	11/01/18 16:56	
Aroclor 1260	ND	0.50	1	B8K0028	11/01/2018	11/01/18 16:56	
Aroclor 1262	ND	0.50	1	B8K0028	11/01/2018	11/01/18 16:56	
Aroclor 1268	ND	0.50	1	B8K0028	11/01/2018	11/01/18 16:56	
Surrogate: Decachlorobiphenyl	66.6 %	8 - 128		B8K0028	11/01/2018	11/01/18 16:56	
Surrogate: Tetrachloro-m-xylene	95.6 %	32 - 126		B8K0028	11/01/2018	11/01/18 16:56	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

Report To: Ross Surrency 17781 Cowan Street Irvine, CA 92614 Reported: 11/09/2018

QUALITY CONTROL SECTION

Total Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0805 - EPA 3050B_S										
Blank (B8J0805-BLK1)					Prepared	: 10/30/2018	Analyzed: 10/3	31/2018		
Lead	0.244706	1.0	0.18							J
LCS (B8J0805-BS1)					Prepared	: 10/30/2018	Analyzed: 10/3	31/2018		
Lead	41.9957	1.0	0.18	50.0000		84.0	80 - 120			
Duplicate (B8J0805-DUP1)		Se	ource: 18040	36-01	Prepared	: 10/30/2018	Analyzed: 10/3	31/2018		
Lead	4.34105	1.0	0.18		4.02274			7.61	20	
Matrix Spike (B8J0805-MS1)		Se	ource: 18040	36-01	Prepared	: 10/30/2018	Analyzed: 10/3	31/2018		
Lead	88.0306	1.0	0.18	125.000	4.02274	67.2	30 - 113			
Matrix Spike Dup (B8J0805-MSD1)		Se	Source: 1804036-01		Prepared: 10/30/2018 Analyzed: 10/31/20		31/2018			
Lead	86.3448	1.0	0.18	125.628	4.02274	65.5	30 - 113	1.93	20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source	0/ P	% Rec	DDD	RPD	N
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0806 - EPA 3050B_S										
Blank (B8J0806-BLK1)					Prepared:	10/30/2018	Analyzed: 10/3	1/2018		
Lead	ND	1.0	0.18							
LCS (B8J0806-BS1)					Prepared:	10/30/2018	Analyzed: 10/3	1/2018		
Lead	40.9539	1.0	0.18	50.0000		81.9	80 - 120			
Duplicate (B8J0806-DUP1)		So	urce: 18040	36-54	Prepared:	10/30/2018	Analyzed: 10/3	1/2018		
Lead	4.24292	1.0	0.18		3.61932			15.9	20	
Matrix Spike (B8J0806-MS1)		So	urce: 18040	36-54	Prepared:	10/30/2018	Analyzed: 10/3	1/2018		
Lead	90.2903	1.0	0.18	124.378	3.61932	69.7	30 - 113			
Matrix Spike Dup (B8J0806-MSD1)		So	Source: 1804036-54		Prepared: 10/30/2018 Analyzed: 10/31		1/2018			
Lead	91.6942	1.0	0.18	125.000	3.61932	70.5	30 - 113	1.54	20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0013 - EPA 3010A_W										
Blank (B8K0013-BLK1)					Prepared	d: 11/1/2018 A	Analyzed: 11/1/	2018		
Lead	ND	0.0050	0.0047							
LCS (B8K0013-BS1)					Prepared	d: 11/1/2018 A	Analyzed: 11/1/	2018		
Lead	0.857613	0.0050	0.0047	1.00000		85.8	80 - 120			
Duplicate (B8K0013-DUP1)		:	Source: 18040	36-91	Prepared	d: 11/1/2018 A	Analyzed: 11/1/	2018		
Lead	ND	0.0050	0.0047		ND			NR	20	
Matrix Spike (B8K0013-MS1)		:	Source: 18040	36-91	Prepared	d: 11/1/2018 A	Analyzed: 11/1/	2018		
Lead	2.15433	0.0050	0.0047	2.50000	ND	86.2	59 - 123			
Matrix Spike Dup (B8K0013-MSD1)		Source: 1804036-91			Prepared	Prepared: 11/1/2018 Analyzed: 11/1/2018				
Lead	2.22662	0.0050	0.0047	2.50000	ND	89.1	59 - 123	3.30	20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0802 - EPA 3010A MS	_ W									
Blank (B8J0802-BLK1)					Prepared	: 10/30/2018	Analyzed: 10/	30/2018		
Arsenic	ND	1.0	0.39							
LCS (B8J0802-BS1)					Prepared	: 10/30/2018	Analyzed: 10/	30/2018		
Arsenic	9.68134	1.0	0.39	10.0000		96.8	85 - 115			
Matrix Spike (B8J0802-MS1)		Se	ource: 18040	36-91	Prepared					
Arsenic	17.9901	1.0	0.39	20.0000	ND	90.0	75 - 125			
Matrix Spike Dup (B8J0802-MSD1))	Se	ource: 18040	36-91	Prepared: 10/30/2018 Analyzed: 10/30/2018					
Arsenic	18.1168	1.0	0.39	20.0000	ND	90.6	75 - 125	0.702	20	
Post Spike (B8J0802-PS1)		Se	Source: 1804036-91		Prepared: 10/30/2018 Analyzed: 10/30/2018					
Arsenic	5.03574			5.00000	0.348270	93.7	75 - 125			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0006 - EPA 3050B MS	S_S									
Blank (B8K0006-BLK1)					Prepared	l: 10/31/2018	Analyzed: 11/	1/2018		
Arsenic	ND	0.25	0.01							
LCS (B8K0006-BS1)					Prepared	l: 10/31/2018	Analyzed: 11/	1/2018		
Arsenic	3.89037	0.25	0.01	5.00000		77.8	70 - 130			
Matrix Spike (B8K0006-MS1)		Se	ource: 18040	36-01	Prepared: 10/31/2018 Analyzed: 11/1/2018					
Arsenic	6.24290	1.0	0.04	5.00000	2.01864	84.5	75 - 125			
Matrix Spike Dup (B8K0006-MSD1	.)	Se	ource: 18040	36-01	Prepared	1: 10/31/2018	Analyzed: 11/	1/2018		
Arsenic	6 51565	1.0	0.04	5 00000	2.01864	89 9	75 - 125	4 28	20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B8K0006 - EPA 3050B MS_S

Prepared: 10/31/2018 Analyzed: 11/1/2018 Post Spike (B8K0006-PS1) Source: 1804036-01

5.30419 1.00932 85.9 75 - 125 5.00000 Arsenic

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0007 - EPA 3050B M	IS_S									
Blank (B8K0007-BLK1)					Prepared	1: 10/31/2018	Analyzed: 11/	1/2018		
Arsenic	0.016989	0.25	0.01							J
LCS (B8K0007-BS1)					Prepared	1: 10/31/2018	Analyzed: 11/	1/2018		
Arsenic	4.05139	0.25	0.01	5.00000		81.0	70 - 130			
Matrix Spike (B8K0007-MS1)		S	ource: 18040	36-54	Prepared	1: 10/31/2018	1/2018			
Arsenic	6.12125	1.0	0.04	5.00000	1.99405	82.5	75 - 125			
Matrix Spike Dup (B8K0007-MSD	01)	s	ource: 18040	36-54	Prepared: 10/31/2018 Analyzed: 11/1/2018					
Arsenic	7.00670	1.0	0.04	5.00000	1.99405	100	75 - 125	13.5	20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	Spike	Source		% Rec		RPD		
Analyte	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes	ı

Batch B8K0007 - EPA 3050B MS_S

Prepared: 10/31/2018 Analyzed: 11/1/2018 Post Spike (B8K0007-PS1) Source: 1804036-54

0.997027 75 - 125 Arsenic 5.31580 5.00000 86.4

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0091 - EPA 3050B MS_	S									
Blank (B8K0091-BLK1)					Prepared: 11/2/2018 Analyzed: 11/4/2018					
Arsenic	ND	0.25	0.01							
LCS (B8K0091-BS1)					Prepared: 11/2/2018 Analyzed: 11/4/2018					
Arsenic	3.82380	0.25	0.01	5.00000		76.5	70 - 130			
Matrix Spike (B8K0091-MS1)		Se	ource: 18040	36-36	Prepared	l: 11/2/2018 A	2018			
Arsenic	9.22514	1.0	0.04	5.00000	2.22455	140	75 - 125			M1
Matrix Spike Dup (B8K0091-MSD1)	rix Spike Dup (B8K0091-MSD1) Source: 1804036-36			36-36	Prepared	l: 11/2/2018 A	Analyzed: 11/4/	2018		
Arsenic	9.71162	1.0	0.04	5.00000	2.22455	150	75 - 125	5.14	20	M1

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B8K0091 - EPA 3050B MS_S

Prepared: 11/2/2018 Analyzed: 11/4/2018 Post Spike (B8K0091-PS1) Source: 1804036-36

5.00000 1.11228 84.5 75 - 125 Arsenic 5.33702

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD			
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes		
Batch B8K0289 - EPA 3050B MS_S												
Blank (B8K0289-BLK1)					Prepared:	11/8/2018 A	nalyzed: 11/8/2	2018				
Arsenic	0.02183	0.25	0.01							J		
LCS (B8K0289-BS1)					Prepared: 11/8/2018 Analyzed: 11/8/2018							
Arsenic	4.14572	0.25	0.01	5.00000		82.9	70 - 130					
Matrix Spike (B8K0289-MS1)		So	urce: 180403	36-44	Prepared: 11/8/2018 Analyzed: 11/8/2018							
Arsenic	16.3129	1.0	0.04	5.00000	9.91743	128	75 - 125			M1		
Matrix Spike Dup (B8K0289-MSD1)		So	urce: 180403	36-44	Prepared: 11/8/2018 A		Analyzed: 11/8/2018					
Arsenic	16.0949	1.0	0.04	5.00000	9.91743	124	75 - 125	1.35	20			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B8K0289 - EPA 3050B MS_S

Prepared: 11/8/2018 Analyzed: 11/8/2018 Post Spike (B8K0289-PS1) Source: 1804036-44

9.90531 5.00000 4.95871 98.9 75 - 125 Arsenic

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

STLC Metals by ICP-AES by EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0286 - STLC_S Extrac	tion									
Blank (B8K0286-BLK1)					Prepared	: 11/8/2018 A	Analyzed: 11/8/	2018		
Lead	ND	1.0	0.094							
LCS (B8K0286-BS1)					Prepared	: 11/8/2018 A	Analyzed: 11/8/	2018		
Lead	1.85858			2.00000		92.9	80 - 120			
Duplicate (B8K0286-DUP1)		;	Source: 18040	36-45	Prepared	: 11/8/2018 A	Analyzed: 11/8/	2018		
Lead	3.69599	1.0	0.094		3.70336			0.199	20	
Duplicate (B8K0286-DUP2)		;	Source: 18040	57-01	Prepared	: 11/8/2018 A	Analyzed: 11/8/	2018		
Lead	3.67602	1.0	0.094		3.73674			1.64	20	
Matrix Spike (B8K0286-MS1)		;	Source: 18040	36-45	Prepared	: 11/8/2018 A	Analyzed: 11/8/	2018		
Lead	5.73465			2.50000	3.70336	81.3	70 - 130			
Matrix Spike (B8K0286-MS2)		:	Source: 18040	57-01	Prepared	: 11/8/2018 A	Analyzed: 11/8/	2018		
Lead	5.97494			2.50000	3.73674	89.5	70 - 130			
Matrix Spike Dup (B8K0286-MSD1)		:	Source: 18040	36-45	Prepared	: 11/8/2018 A	Analyzed: 11/8/	2018		
Lead	6.14919			2.50000	3.70336	97.8	70 - 130	6.98	20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Mercury by AA (Cold Vapor) EPA 7470A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0015 - EPA 245.1/7470	_w									
Blank (B8K0015-BLK1)					Prepared:	11/1/2018	Analyzed: 11/1/	2018		
Mercury	ND	0.20	0.03							
LCS (B8K0015-BS1)					Prepared:	11/1/2018	Analyzed: 11/1/	2018		
Mercury	9.64105	0.20	0.03	10.0000		96.4	80 - 120			
Duplicate (B8K0015-DUP1)		s	ource: 18040	36-91	Prepared:	11/1/2018	Analyzed: 11/1/	2018		
Mercury	ND	0.20	0.03		ND			NR	20	
Matrix Spike (B8K0015-MS1)		S	ource: 18040	36-91	Prepared:	11/1/2018	Analyzed: 11/1/	2018		
Mercury	9.68201	0.20	0.03	10.0000	ND	96.8	70 - 130			
Matrix Spike Dup (B8K0015-MSD1))	\mathbf{s}	ource: 18040	36-91	Prepared:	11/1/2018	Analyzed: 11/1/	2018		
Mercury	10.0115	0.20	0.03	10.0000	ND	100	70 - 130	3.35	20	
Post Spike (B8K0015-PS1)		\mathbf{s}	ource: 18040	36-91	Prepared:	11/1/2018	Analyzed: 11/1/	2018		
Mercury	5.14761			5.00000	-0.001308	103	85 - 115			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0808 - EPA 7471_S										
Blank (B8J0808-BLK1)					Prepared	1: 10/30/2018	Analyzed: 11/1	1/2018		
Mercury	ND	0.10	0.006							
LCS (B8J0808-BS1)					Prepared	1: 10/30/2018	Analyzed: 11/1	1/2018		
Mercury	0.799128	0.10	0.006	0.833333		95.9	80 - 120			
Duplicate (B8J0808-DUP1)		Se	ource: 18040	36-01	Prepared	1: 10/30/2018	Analyzed: 11/1	1/2018		
Mercury	0.047131	0.10	0.006		0.045198			4.19	20	J
Matrix Spike (B8J0808-MS1)		Se	ource: 18040	36-01	Prepared	1: 10/30/2018	Analyzed: 11/1	1/2018		
Mercury	0.889280	0.10	0.006	0.819672	0.045198	103	70 - 130			
Matrix Spike Dup (B8J0808-MSD1)		Se	ource: 18040)36-01	Prepared	1: 10/30/2018	Analyzed: 11/1	1/2018		
Mercury	0.888773	0.10	0.006	0.833333	0.045198	101	70 - 130	0.0569	20	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

PQL Result Spike % Rec RPD Source % Rec Analyte (mg/L) (mg/L) Level Result Limits RPD Limit Notes

Batch B8J0808 - EPA 7471_S

Prepared: 10/30/2018 Analyzed: 11/1/2018 Post Spike (B8J0808-PS1) Source: 1804036-01

5.00000E-3 85 - 115 0.0053715.424E-4 96.6 Mercury

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0809 - EPA 7471_S										
Blank (B8J0809-BLK1)					Prepared	: 10/30/2018	Analyzed: 11/1	/2018		
Mercury	ND	0.10	0.006							
LCS (B8J0809-BS1)					Prepared	: 10/30/2018	Analyzed: 11/1	/2018		
Mercury	0.812659	0.10	0.006	0.833333		97.5	80 - 120			
Duplicate (B8J0809-DUP1)		Se	ource: 18040	36-54	Prepared	: 10/30/2018	Analyzed: 11/1	/2018		
Mercury	0.044820	0.10	0.006		0.027339			48.5	20	R, J
Matrix Spike (B8J0809-MS1)		Se	ource: 18040	36-54	Prepared	: 10/30/2018	Analyzed: 11/1	/2018		
Mercury	0.899073	0.10	0.006	0.819672	0.027339	106	70 - 130			
Matrix Spike Dup (B8J0809-MSD1)		Se	ource: 18040	36-54	Prepared	: 10/30/2018	Analyzed: 11/1	/2018		
Mercury	0.897226	0.10	0.006	0.833333	0.027339	104	70 - 130	0.206	20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Mercury by AA (Cold Vapor) EPA 7471A - Quality Control

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B8J0809 - EPA 7471_S

Post Spike (B8J0809-PS1) Prepared: 10/30/2018 Analyzed: 11/1/2018 Source: 1804036-54

5.00000E-3 3.281E-4 85 - 115 M1 Mercury 6.5456E-3 124

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0773 - GCVOA_S										
Blank (B8J0773-BLK1)					Prepare	d: 10/30/2018	3 Analyzed: 10/	30/2018		
Gasoline Range Organics	ND	1.0	0.20							
Surrogate: 4-Bromofluorobenzene	0.2102			0.200000		105	42 - 153			
LCS (B8J0773-BS1)					Prepare	d: 10/30/2018	3 Analyzed: 10/	30/2018		
Gasoline Range Organics	4.13300	1.0	0.20	5.00000		82.7	70 - 130			
Surrogate: 4-Bromofluorobenzene	0.1865			0.200000		93.3	42 - 153			
Duplicate (B8J0773-DUP1)		S	ource: 18040	036-01	Prepare	d: 10/30/2018	3 Analyzed: 10/	30/2018		
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20	
Surrogate: 4-Bromofluorobenzene	0.1942			0.200000		97.1	42 - 153			
Matrix Spike (B8J0773-MS1)		s	ource: 18040	029-09	Prepare	d: 10/30/2018	3 Analyzed: 10/	30/2018		
Gasoline Range Organics	4.54500	1.0	0.20	5.00000	ND	90.9	22 - 121			
Surrogate: 4-Bromofluorobenzene	0.2262			0.200000		113	42 - 153			
Matrix Spike Dup (B8J0773-MSD1)		s	ource: 18040	029-09	Prepare	d: 10/30/2018	3 Analyzed: 10/	30/2018		
Gasoline Range Organics	4.48900	1.0	0.20	5.00000	ND	89.8	22 - 121	1.24	20	
Surrogate: 4-Bromofluorobenzene	0.2109			0.200000		105	42 - 153		-	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0812 - GCVOA S										
Dates Bookotz GC (OA_5)										
Blank (B8J0812-BLK1)					Prepared	1: 10/30/2018	8 Analyzed: 10/3	30/2018		
Gasoline Range Organics	ND	1.0	0.20							
Surrogate: 4-Bromofluorobenzene	0.1770			0.200000		88.5	42 - 153			
LCS (B8J0812-BS1)					Prepared	1: 10/30/2018	8 Analyzed: 10/3	30/2018		
Gasoline Range Organics	4.11000	1.0	0.20	5.00000		82.2	70 - 130			
Surrogate: 4-Bromofluorobenzene	0.1646			0.200000		82.3	42 - 153			
Duplicate (B8J0812-DUP1)		s	Source: 18040)36-39	Prepared	1: 10/30/2018	8 Analyzed: 10/3	30/2018		
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20	
Surrogate: 4-Bromofluorobenzene	0.1766			0.200000		88.3	42 - 153			
Matrix Spike (B8J0812-MS1)		s	Source: 18040)36-39	Prepared	1: 10/30/2018	3 Analyzed: 10/3	30/2018		
Gasoline Range Organics	3.65500	1.0	0.20	5.00000	ND	73.1	22 - 121			
Surrogate: 4-Bromofluorobenzene	0.1820			0.200000		91.0	42 - 153			
Matrix Spike Dup (B8J0812-MSD1)		s	Source: 18040)36-39	Prepared	1: 10/30/2018	3 Analyzed: 10/3	30/2018		
Gasoline Range Organics	3.59700	1.0	0.20	5.00000	ND	71.9	22 - 121	1.60	20	
Surrogate: 4-Bromofluorobenzene	0.1778			0.200000		88.9	42 - 153			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

Report To: Ross Surrency 17781 Cowan Street Irvine, CA 92614 Reported: 11/09/2018

0.1030

Surrogate: 4-Bromofluorobenzene

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0827 - GCVOA_W										
Blank (B8J0827-BLK1)					Prepared	d: 10/31/2018	Analyzed: 10/3	31/2018		
Gasoline Range Organics	ND	0.20	0.05							
Surrogate: 4-Bromofluorobenzene	0.1018			0.100000		102	70 - 130			
LCS (B8J0827-BS1)					Prepared	d: 10/31/2018	Analyzed: 10/3	31/2018		
Gasoline Range Organics	0.965000	0.20	0.05	1.00000		96.5	70 - 130			
Surrogate: 4-Bromofluorobenzene	0.1058			0.100000		106	70 - 130			
LCS Dup (B8J0827-BSD1)					Prepared	d: 10/31/2018	Analyzed: 10/3	31/2018		
Gasoline Range Organics	0.985000	0.20	0.05	1.00000		98.5	70 - 130	2.05	20	

0.100000

103

70 - 130

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0002 - GCVOA_S										
Datell Bortoug - GC VOA_S										
Blank (B8K0002-BLK1)					Prepare	d: 11/1/2018	Analyzed: 11/1/	2018		
Gasoline Range Organics	ND	1.0	0.20							
Surrogate: 4-Bromofluorobenzene	0.2104			0.200000		105	42 - 153			
LCS (B8K0002-BS1)					Prepare	d: 11/1/2018	Analyzed: 11/1/	2018		
Gasoline Range Organics	3.61400	1.0	0.20	5.00000		72.3	70 - 130			
Surrogate: 4-Bromofluorobenzene	0.1525			0.200000		76.2	42 - 153			
Duplicate (B8K0002-DUP1)		S	ource: 18040	036-54	Prepare	d: 11/1/2018	Analyzed: 11/1/	2018		
Gasoline Range Organics	ND	1.0	0.20		ND			NR	20	
Surrogate: 4-Bromofluorobenzene	0.2118			0.200000		106	42 - 153			
Matrix Spike (B8K0002-MS1)		S	ource: 18040	053-01	Prepare	d: 11/1/2018	Analyzed: 11/1/	2018		
Gasoline Range Organics	4.62900	1.0	0.20	5.00000	ND	92.6	22 - 121			
Surrogate: 4-Bromofluorobenzene	0.2338			0.200000	_	117	42 - 153			
Matrix Spike Dup (B8K0002-MSD)	1)	S	ource: 18040	053-01	Prepare	d: 11/1/2018	Analyzed: 11/1/	2018		
Gasoline Range Organics	4.42300	1.0	0.20	5.00000	ND	88.5	22 - 121	4.55	20	
Surrogate: 4-Bromofluorobenzene	0.2217			0.200000		111	42 - 153			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0859 - GCSEMI_DRO	_LL_S									
Blank (B8J0859-BLK1)					Prepared	: 10/31/2018	3 Analyzed: 10/3	31/2018		
DRO	ND	1.0	1.0							
ORO	ND	1.0	1.0							
Surrogate: p-Terphenyl	2.610			2.66667		97.9	34 - 158			
LCS (B8J0859-BS1)					Prepared	: 10/31/2018	8 Analyzed: 10/3	31/2018		
DRO	35.7553	1.0	1.0	33.3333		107	47 - 152			
Surrogate: p-Terphenyl	2.759			2.66667		103	34 - 158			
Duplicate (B8J0859-DUP1)		S	ource: 1804()36-01	Prepared	: 10/31/2018	3 Analyzed: 10/3	31/2018		
DRO	5.39200	1.0	1.0		1.54967			111	20	R
Surrogate: p-Terphenyl	1.507			2.66667		56.5	34 - 158			
Matrix Spike (B8J0859-MS1)		s	ource: 1804()36-01	Prepared	: 10/31/2018	3 Analyzed: 10/3	31/2018		
DRO	27.0797	1.0	1.0	33.3333	1.54967	76.6	34 - 130			
Surrogate: p-Terphenyl	2.145			2.66667		80.4	34 - 158			
Matrix Spike Dup (B8J0859-MSD1)		s	ource: 1804(36-01	Prepared	: 10/31/2018	3 Analyzed: 10/3	31/2018		
DRO	29.2520	1.0	1.0	33.3333	1.54967	83.1	34 - 130	7.71	20	
Surrogate: p-Terphenyl	2.266			2.66667		85.0	34 - 158			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0879 - GCSEMI_DR	O_LL_S									
Blank (B8J0879-BLK1)					Prepared	1: 10/31/201	8 Analyzed: 11/1	/2018		
DRO	ND	1.0	1.0							
ORO	ND	1.0	1.0							
Surrogate: p-Terphenyl	3.137			2.66667		118	34 - 158			
LCS (B8J0879-BS1)					Prepared	1: 10/31/201	8 Analyzed: 11/1	/2018		
DRO	28.7357	1.0	1.0	33.3333		86.2	47 - 152			
Surrogate: p-Terphenyl	2.270			2.66667		85.1	34 - 158			
Duplicate (B8J0879-DUP1)		S	ource: 18040	036-57	Prepared	1: 10/31/201	8 Analyzed: 11/1	/2018		
DRO	10.9510	1.0	1.0		5.55533			65.4	20	R
Surrogate: p-Terphenyl	1.709			2.66667		64.1	34 - 158			
Matrix Spike (B8J0879-MS1)		S	ource: 18040	036-57	Prepared	1: 10/31/201	8 Analyzed: 11/1	/2018		
DRO	20.7637	1.0	1.0	33.3333	5.55533	45.6	34 - 130			
Surrogate: p-Terphenyl	1.448			2.66667		54.3	34 - 158			
Matrix Spike Dup (B8J0879-MSD	1)	S	ource: 1804(036-57	Prepared	1: 10/31/201	8 Analyzed: 11/1	/2018		
DRO	40.7063	1.0	1.0	33.3333	5.55533	105	34 - 130	64.9	20	R2
Surrogate: p-Terphenyl	1.953			2.66667		73.2	34 - 158			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0020 - GCSEMI_DF	RO_W									
Blank (B8K0020-BLK1)					Prepare	d: 11/1/2018 A	Analyzed: 11/1/	2018		
DRO	ND	0.05	0.05							
ORO	ND	0.05	0.05							
Surrogate: p-Terphenyl	0.08862			8.00000E-2		111	32 - 169			
LCS (B8K0020-BS1)					Prepare	d: 11/1/2018 A	Analyzed: 11/1/	2018		
DRO	0.998590	0.05	0.05	1.00000		99.9	45 - 161			
Surrogate: p-Terphenyl	0.08687			8.00000E-2		109	32 - 169			
LCS Dup (B8K0020-BSD1)					Prepare	d: 11/1/2018 A	Analyzed: 11/1/	2018		
DRO	1.02587	0.05	0.05	1.00000		103	45 - 161	2.70	20	
Surrogate: p-Terphenyl	0.08333			8.00000E-2		104	32 - 169			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0152 - GCSEMI_DR	O_LL_S									
Blank (B8K0152-BLK1)					Prepared	: 11/5/2018	Analyzed: 11/6/2	2018		
DRO	ND	1.0	1.0							
ORO	ND	1.0	1.0							
Surrogate: p-Terphenyl	2.391			2.66667		89.7	34 - 158			
LCS (B8K0152-BS1)					Prepared	: 11/5/2018	Analyzed: 11/6/2	2018		
DRO	30.9987	1.0	1.0	33.3333		93.0	47 - 152			
Surrogate: p-Terphenyl	2.542			2.66667		95.3	34 - 158			
Matrix Spike (B8K0152-MS1)	s	ource: 1804(36-68	Prepared	: 11/5/2018	Analyzed: 11/6/2	2018			
DRO	26.2097	1.0	1.0	33.3333	7.79100	55.3	34 - 130			
Surrogate: p-Terphenyl	1.902			2.66667		71.3	34 - 158			
Matrix Spike (B8K0152-MS2)		S	ource: 1804(052-02	Prepared	: 11/5/2018	Analyzed: 11/6/2	2018		
DRO	29.0940	1.0	1.0	33.3333	2.67067	79.3	34 - 130			
Surrogate: p-Terphenyl	2.127			2.66667		79.8	34 - 158			
Matrix Spike Dup (B8K0152-MSD	1)	S	ource: 1804(36-68	Prepared	: 11/5/2018	Analyzed: 11/6/2	2018		
DRO	31.3290	1.0	1.0	33.3333	7.79100	70.6	34 - 130	17.8	20	
Surrogate: p-Terphenyl	2.143			2.66667		80.4	34 - 158	_		_
Matrix Spike Dup (B8K0152-MSD2	2)	s	ource: 1804(052-02	Prepared	: 11/5/2018	Analyzed: 11/6/2	2018		
DRO	25.9067	1.0	1.0	33.3333	2.67067	69.7	34 - 130	11.6	20	
Surrogate: p-Terphenyl	2.057			2.66667		77.1	34 - 158			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Blank (B8J0820-BLK1)			
4,4′-DDD	ND	2.0	0.07
4,4′-DDD [2C]	ND	2.0	0.07
4,4'-DDE	ND	2.0	0.05
4,4'-DDE [2C]	ND	2.0	0.05
4,4´-DDT	ND	2.0	0.10
4,4'-DDT [2C]	ND	2.0	0.10
Aldrin	ND	1.0	0.04
Aldrin [2C]	ND	1.0	0.04
alpha-BHC	ND	1.0	0.11
alpha-BHC [2C]	ND	1.0	0.11
alpha-Chlordane	ND	1.0	0.12
alpha-Chlordane [2C]	ND	1.0	0.12
beta-BHC	ND	1.0	0.06
beta-BHC [2C]	ND	1.0	0.06
Chlordane	ND	8.5	1.1
Chlordane [2C]	ND	8.5	1.1
delta-BHC	ND	1.0	0.03
delta-BHC [2C]	ND	1.0	0.03
Dieldrin	ND	2.0	0.13
Dieldrin [2C]	ND	2.0	0.13
Endosulfan I	ND	1.0	0.10
Endosulfan I [2C]	ND	1.0	0.10
Endosulfan II	ND	2.0	0.03
Endosulfan II [2C]	ND	2.0	0.03
Endosulfan sulfate	ND	2.0	0.08
Endosulfan Sulfate [2C]	ND	2.0	0.08
Endrin	ND	2.0	0.04
Endrin [2C]	ND	2.0	0.04
Endrin aldehyde	ND	2.0	0.31
Endrin aldehyde [2C]	ND	2.0	0.31
Endrin ketone	ND	2.0	0.13
Endrin ketone [2C]	ND	2.0	0.13
gamma-BHC	ND	1.0	0.10
gamma-BHC [2C]	ND	1.0	0.10
gamma-Chlordane	ND	1.0	0.07
gamma-Chlordane [2C]	ND	1.0	0.07
Heptachlor	ND	1.0	0.05
Heptachlor [2C]	ND	1.0	0.05
Heptachlor epoxide	ND	1.0	0.09
Heptachlor epoxide [2C]	ND	1.0	0.09
Methoxychlor	ND	5.0	0.18

Prepared: 10/30/2018 Analyzed: 10/30/2018

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0820 - GCSEMI_PCF	B/PEST_S (co	ntinued)								
Blank (B8J0820-BLK1) - Continue	d				Prepared	d: 10/30/2018	Analyzed: 10/	30/2018		
Methoxychlor [2C]	ND	5.0	0.18							
Toxaphene	ND	50	4.7							
Toxaphene [2C]	ND	50	4.7							
Surrogate: Decachlorobiphenyl	10.79			16.6667		64.7	43 - 84			
Surrogate: Decachlorobiphenyl [7.620			16.6667		45.7	43 - 84			
Surrogate: Tetrachloro-m-xylene	12.32			16.6667		73.9	54 - 118			
Surrogate: Tetrachloro-m-xylene	12.03			16.6667		72.2	54 - 118			
LCS (B8J0820-BS1)					Prepared	d: 10/30/2018	Analyzed: 10/2	30/2018		
4,4′-DDD	13.9298	2.0	0.07	16.6667		83.6	73 - 110			
4,4'-DDD [2C]	13.0453	2.0	0.07	16.6667		78.3	73 - 110			
4,4'-DDE	13.3360	2.0	0.05	16.6667		80.0	71 - 99			
4,4'-DDE [2C]	13.6525	2.0	0.05	16.6667		81.9	71 - 99			
4,4'-DDT	11.0328	2.0	0.10	16.6667		66.2	51 - 106			
4,4'-DDT [2C]	13.5797	2.0	0.10	16.6667		81.5	51 - 106			
Aldrin	12.9015	1.0	0.04	16.6667		77.4	67 - 95			
Aldrin [2C]	12.8925	1.0	0.04	16.6667		77.4	67 - 95			
alpha-BHC	13.1245	1.0	0.11	16.6667		78.7	67 - 94			
alpha-BHC [2C]	13.1420	1.0	0.11	16.6667		78.9	67 - 94			
alpha-Chlordane	13.3982	1.0	0.12	16.6667		80.4	69 - 99			
alpha-Chlordane [2C]	12.7508	1.0	0.12	16.6667		76.5	69 - 99			
beta-BHC	13.1260	1.0	0.06	16.6667		78.8	67 - 99			
beta-BHC [2C]	13.3908	1.0	0.06	16.6667		80.3	67 - 99			
delta-BHC	14.5380	1.0	0.03	16.6667		87.2	73 - 103			
delta-BHC [2C]	15.2622	1.0	0.03	16.6667		91.6	73 - 103			
Dieldrin	12.4940	2.0	0.13	16.6667		75.0	65 - 93			
Dieldrin [2C]	12.1118	2.0	0.13	16.6667		72.7	65 - 93			
Endosulfan I	11.7123	1.0	0.10	16.6667		70.3	65 - 91			
Endosulfan I [2C]	12.0663	1.0	0.10	16.6667		72.4	65 - 91			
Endosulfan II	13.3295	2.0	0.03	16.6667		80.0	65 - 102			
Endosulfan II [2C]	13.2028	2.0	0.03	16.6667		79.2	65 - 102			
Endosulfan sulfate	13.1952	2.0	0.08	16.6667		79.2	64 - 106			
Endosulfan Sulfate [2C]	13.8513	2.0	0.08	16.6667		83.1	64 - 106			
Endrin	14.0282	2.0	0.04	16.6667		84.2	64 - 111			
Endrin [2C]	14.5208	2.0	0.04	16.6667		87.1	64 - 111			
Endrin aldehyde	13.5690	2.0	0.31	16.6667		81.4	64 - 109			
Endrin aldehyde [2C]	9.57917	2.0	0.31	16.6667		57.5	64 - 109			L4
Endrin ketone	12.7512	2.0	0.13	16.6667		76.5	57 - 101			
Endrin ketone [2C]	13.2855	2.0	0.13	16.6667		79.7	57 - 101			
gamma-BHC	12.8382	1.0	0.10	16.6667		77.0	65 - 96			
gamma-BHC [2C]	13.1258	1.0	0.10	16.6667		78.8	65 - 96			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D / I DO 10000 CCCCEMI PCE	MDECE C									
Batch B8J0820 - GCSEMI_PCE	B/PEST_S (co	ntinued)								
LCS (B8J0820-BS1) - Continued					Prepared	1: 10/30/2018	Analyzed: 10/3	30/2018		
gamma-Chlordane	13.3370	1.0	0.07	16.6667		80.0	65 - 113			
gamma-Chlordane [2C]	12.3680	1.0	0.07	16.6667		74.2	65 - 113			
Heptachlor	13.2545	1.0	0.05	16.6667		79.5	61 - 96			
Heptachlor [2C]	15.5653	1.0	0.05	16.6667		93.4	61 - 96			
Heptachlor epoxide	12.4858	1.0	0.09	16.6667		74.9	64 - 89			
Heptachlor epoxide [2C]	12.9450	1.0	0.09	16.6667		77.7	64 - 89			
Methoxychlor	17.1233	5.0	0.18	16.6667		103	67 - 109			
Methoxychlor [2C]	14.4872	5.0	0.18	16.6667		86.9	67 - 109			
Surrogate: Decachlorobiphenyl	10.90			16.6667		65.4	43 - 84			
Surrogate: Decachlorobiphenyl [8.281			16.6667		49.7	43 - 84			
Surrogate: Tetrachloro-m-xylene	12.14			16.6667		72.8	54 - 118			
Surrogate: Tetrachloro-m-xylene	12.43			16.6667		74.6	54 - 118			
Duplicate (B8J0820-DUP1)		Se	ource: 18040	36-10	Prepared	d: 10/30/2018	Analyzed: 10/3	31/2018		
4,4′-DDD	ND	2.0	0.07		ND				20	
4,4′-DDD [2C]	ND	2.0	0.07		ND				20	
4,4´-DDE	ND	2.0	0.05		ND				20	
4,4′-DDE [2C]	ND	2.0	0.05		ND				20	
4,4′-DDT	ND	2.0	0.10		ND				20	
4,4′-DDT [2C]	ND	2.0	0.10		ND				20	
Aldrin	ND	1.0	0.04		ND				20	
Aldrin [2C]	ND	1.0	0.04		ND				20	
alpha-BHC	ND	1.0	0.11		ND				20	
alpha-BHC [2C]	ND	1.0	0.11		ND				20	
alpha-Chlordane	ND	1.0	0.12		ND				20	
alpha-Chlordane [2C]	ND	1.0	0.12		ND				20	
beta-BHC	ND	1.0	0.06		ND				20	
beta-BHC [2C]	ND	1.0	0.06		ND				20	
delta-BHC	ND	1.0	0.03		ND				20	
delta-BHC [2C]	ND	1.0	0.03		ND				20	
Dieldrin	ND	2.0	0.13		ND				20	
Dieldrin [2C]	ND	2.0	0.13		ND				20	
Endosulfan I	ND	1.0	0.10		ND				20	
Endosulfan I [2C]	ND	1.0	0.10		ND				20	
Endosulfan II	ND	2.0	0.03		ND				20	
Endosulfan II [2C]	ND	2.0	0.03		ND				20	
Endosulfan sulfate	ND	2.0	0.08		ND				20	
Endosulfan Sulfate [2C]	ND	2.0	0.08		ND				20	
Endrin	ND	2.0	0.04		ND				20	
Endrin [2C]	ND	2.0	0.04		ND				20	
Endrin aldehyde	ND	2.0	0.31		ND				20	

Endosulfan II [2C]

10.6295

2.0

Certificate of Analysis

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0820 - GCSEMI_PCI	B/PEST_S (con	ntinued)								
Duplicate (B8J0820-DUP1) - Conti	nued	So	ource: 18040	36-10	Prepare	d: 10/30/2018	Analyzed: 10/3	31/2018		
Endrin aldehyde [2C]	ND	2.0	0.31		ND				20	
Endrin ketone	ND	2.0	0.13		ND				20	
Endrin ketone [2C]	ND	2.0	0.13		ND				20	
gamma-BHC	ND	1.0	0.10		ND				20	
gamma-BHC [2C]	ND	1.0	0.10		ND				20	
gamma-Chlordane	ND	1.0	0.07		ND				20	
gamma-Chlordane [2C]	ND	1.0	0.07		ND				20	
Heptachlor	ND	1.0	0.05		ND				20	
Heptachlor [2C]	ND	1.0	0.05		ND				20	
Heptachlor epoxide	ND	1.0	0.09		ND				20	
Heptachlor epoxide [2C]	ND	1.0	0.09		ND				20	
Methoxychlor	ND	5.0	0.18		ND				20	
Methoxychlor [2C]	ND	5.0	0.18		ND				20	
Surrogate: Decachlorobiphenyl	5.759			16.6667		34.6	43 - 84			S10
Surrogate: Decachlorobiphenyl [6.190			16.6667		37.1	43 - 84			S10
Surrogate: Tetrachloro-m-xylene	11.24			16.6667		67.4	54 - 118			
Surrogate: Tetrachloro-m-xylene	10.83			16.6667		65.0	54 - 118			
Matrix Spike (B8J0820-MS1)		So	ource: 18040	36-29	Prepare	d: 10/30/2018	Analyzed: 10/3	30/2018		
4,4′-DDD	11.0975	2.0	0.07	16.6667	ND	66.6	73 - 110			M2
4,4'-DDD [2C]	10.6560	2.0	0.07	16.6667	ND	63.9	73 - 110			M2
4,4′-DDE	11.0168	2.0	0.05	16.6667	ND	66.1	71 - 99			M2
4,4'-DDE [2C]	10.7902	2.0	0.05	16.6667	ND	64.7	71 - 99			M2
4,4'-DDT	9.25133	2.0	0.10	16.6667	ND	55.5	51 - 106			
4,4'-DDT [2C]	10.7785	2.0	0.10	16.6667	ND	64.7	51 - 106			
Aldrin	10.2952	1.0	0.04	16.6667	ND	61.8	67 - 95			M2
Aldrin [2C]	10.1335	1.0	0.04	16.6667	ND	60.8	67 - 95			M2
alpha-BHC	10.5592	1.0	0.11	16.6667	ND	63.4	67 - 94			M2
alpha-BHC [2C]	10.8157	1.0	0.11	16.6667	ND	64.9	67 - 94			M2
alpha-Chlordane	10.7318	1.0	0.12	16.6667	ND	64.4	69 - 99			M2
alpha-Chlordane [2C]	10.5288	1.0	0.12	16.6667	ND	63.2	69 - 99			M2
beta-BHC	10.7823	1.0	0.06	16.6667	ND	64.7	67 - 99			M2
beta-BHC [2C]	10.8272	1.0	0.06	16.6667	ND	65.0	67 - 99			M2
delta-BHC	11.5543	1.0	0.03	16.6667	ND	69.3	73 - 103			M2
delta-BHC [2C]	12.3573	1.0	0.03	16.6667	ND	74.1	73 - 103			
Dieldrin	10.0660	2.0	0.13	16.6667	ND	60.4	65 - 93			M2
Dieldrin [2C]	9.72750	2.0	0.13	16.6667	ND	58.4	65 - 93			M2
Endosulfan I	9.54383	1.0	0.10	16.6667	ND	57.3	65 - 91			M2
Endosulfan I [2C]	9.74617	1.0	0.10	16.6667	ND	58.5	65 - 91			M2
Endosulfan II	10.7603	2.0	0.03	16.6667	ND	64.6	65 - 102			M2

M2

16.6667

ND

63.8

65 - 102

0.03

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD				
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes			
Batch B8J0820 - GCSEMI_PCE	B/PEST_S (co	ntinued)											
Matrix Spike (B8J0820-MS1) - Con	ntinued	Se	ource: 18040	36-29	Prepared	d: 10/30/2018	Analyzed: 10/3	30/2018					
Endosulfan sulfate	10.4555	2.0	0.08	16.6667	ND	62.7	64 - 106			M2			
Endosulfan Sulfate [2C]	11.1590	2.0	0.08	16.6667	ND	67.0	64 - 106						
Endrin	11.2487	2.0	0.04	16.6667	ND	67.5	64 - 111						
Endrin [2C]	11.6777	2.0	0.04	16.6667	ND	70.1	64 - 111						
Endrin aldehyde	11.1802	2.0	0.31	16.6667	ND	67.1	64 - 109						
Endrin aldehyde [2C]	9.22167	2.0	0.31	16.6667	ND	55.3	64 - 109			M2			
Endrin ketone	9.79883	2.0	0.13	16.6667	ND	58.8	57 - 101						
Endrin ketone [2C]	9.55617	2.0	0.13	16.6667	ND	57.3	57 - 101						
gamma-BHC	10.4373	1.0	0.10	16.6667	ND	62.6	65 - 96			M2			
gamma-BHC [2C]	10.6830	1.0	0.10	16.6667	ND	64.1	65 - 96			M2			
gamma-Chlordane	10.4165	1.0	0.07	16.6667	ND	62.5	65 - 113			M2			
gamma-Chlordane [2C]	9.28483	1.0	0.07	16.6667	ND	55.7	65 - 113			M2			
Heptachlor	10.7188	1.0	0.05	16.6667	ND	64.3	61 - 96						
Heptachlor [2C]	11.4228	1.0	0.05	16.6667	ND	68.5	61 - 96						
Heptachlor epoxide	10.1132	1.0	0.09	16.6667	ND	60.7	64 - 89			M2			
Heptachlor epoxide [2C]	10.4325	1.0	0.09	16.6667	ND	62.6	64 - 89			M2			
Methoxychlor	11.8853	5.0	0.18	16.6667	ND	71.3	67 - 109						
Methoxychlor [2C]	11.5860	5.0	0.18	16.6667	ND	69.5	67 - 109						
Surrogate: Decachlorobiphenyl	9.090			16.6667		54.5	43 - 84						
Surrogate: Decachlorobiphenyl [6.786			16.6667		40.7	43 - 84			S10			
Surrogate: Tetrachloro-m-xylene	10.08			16.6667		60.5	54 - 118						
Surrogate: Tetrachloro-m-xylene	10.05			16.6667		60.3	54 - 118						
Matrix Spike Dup (B8J0820-MSD1	1)	Se	ource: 18040	36-29	Prepare	d: 10/30/2018	Analyzed: 10/3	30/2018					
4,4′-DDD	10.5022	2.0	0.07	16.6667	ND	63.0	73 - 110	5.51	20	M2			
4,4'-DDD [2C]	9.76517	2.0	0.07	16.6667	ND	58.6	73 - 110	8.72	20	M2			
4,4'-DDE	10.5947	2.0	0.05	16.6667	ND	63.6	71 - 99	3.91	20	M2			
4,4'-DDE [2C]	10.1447	2.0	0.05	16.6667	ND	60.9	71 - 99	6.17	20	M2			
4,4'-DDT	8.73150	2.0	0.10	16.6667	ND	52.4	51 - 106	5.78	20				
4,4'-DDT [2C]	9.84233	2.0	0.10	16.6667	ND	59.1	51 - 106	9.08	20				
Aldrin	10.0142	1.0	0.04	16.6667	ND	60.1	67 - 95	2.77	20	M2			
Aldrin [2C]	9.74533	1.0	0.04	16.6667	ND	58.5	67 - 95	3.91	20	M2			
alpha-BHC	10.3640	1.0	0.11	16.6667	ND	62.2	67 - 94	1.87	20	M2			
alpha-BHC [2C]	10.5502	1.0	0.11	16.6667	ND	63.3	67 - 94	2.49	20	M2			
alpha-Chlordane	10.3362	1.0	0.11	16.6667	ND	62.0	69 - 99	3.86	20	M2			
alpha-Chlordane [2C]	9.89783	1.0	0.12	16.6667	ND	59.4	69 - 99	6.18	20	M2			
beta-BHC	10.5205	1.0	0.06	16.6667	ND	63.1	67 - 99	2.46	20	M2			
beta-BHC [2C]	10.5205	1.0	0.06	16.6667	ND ND	63.1	67 - 99	2.40	20	M2			
delta-BHC	11.7655	1.0	0.03	16.6667	ND ND	70.6	73 - 103	1.81	20	M2			
delta-BHC [2C]	11.7655	1.0	0.03	16.6667	ND ND	70.6	73 - 103 73 - 103	3.72	20	M2			
Dieldrin	9.62100	2.0	0.03	16.6667	ND ND	57.7	65 - 93	4.52	20	M2			
Dicidilli	9.02100	∠.∪	0.13	10.000/	ND	31.1	05 - 95	4.32	20	1 V1 ∠			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8J0820 - GCSEMI_PCI	B/PEST S (cor	ntinued)								
_			19040	26.20	Dronoro	d. 10/20/2019	Analyzadi 10/	20/2019		
Matrix Spike Dup (B8J0820-MSD1	<i>'</i>		ource: 18040		1		Analyzed: 10/3			
Dieldrin [2C]	8.87100	2.0	0.13	16.6667	ND	53.2	65 - 93	9.21	20	M2
Endosulfan I	9.63000	1.0	0.10	16.6667	ND	57.8	65 - 91	0.899	20	M2
Endosulfan I [2C]	9.07083	1.0	0.10	16.6667	ND	54.4	65 - 91	7.18	20	M2
Endosulfan II	10.1953	2.0	0.03	16.6667	ND	61.2	65 - 102	5.39	20	M2
Endosulfan II [2C]	9.79567	2.0	0.03	16.6667	ND	58.8	65 - 102	8.16	20	M2
Endosulfan sulfate	10.0293	2.0	0.08	16.6667	ND	60.2	64 - 106	4.16	20	M2
Endosulfan Sulfate [2C]	10.3268	2.0	0.08	16.6667	ND	62.0	64 - 106	7.75	20	M2
Endrin	10.7265	2.0	0.04	16.6667	ND	64.4	64 - 111	4.75	20	
Endrin [2C]	10.8195	2.0	0.04	16.6667	ND	64.9	64 - 111	7.63	20	
Endrin aldehyde	10.6760	2.0	0.31	16.6667	ND	64.1	64 - 109	4.61	20	
Endrin aldehyde [2C]	8.64017	2.0	0.31	16.6667	ND	51.8	64 - 109	6.51	20	M2
Endrin ketone	9.16433	2.0	0.13	16.6667	ND	55.0	57 - 101	6.69	20	M2
Endrin ketone [2C]	9.16550	2.0	0.13	16.6667	ND	55.0	57 - 101	4.17	20	M2
gamma-BHC	10.2137	1.0	0.10	16.6667	ND	61.3	65 - 96	2.17	20	M2
gamma-BHC [2C]	10.3818	1.0	0.10	16.6667	ND	62.3	65 - 96	2.86	20	M2
gamma-Chlordane	9.97667	1.0	0.07	16.6667	ND	59.9	65 - 113	4.31	20	M2
gamma-Chlordane [2C]	8.79233	1.0	0.07	16.6667	ND	52.8	65 - 113	5.45	20	M2
Heptachlor	10.4140	1.0	0.05	16.6667	ND	62.5	61 - 96	2.88	20	
Heptachlor [2C]	10.9987	1.0	0.05	16.6667	ND	66.0	61 - 96	3.78	20	
Heptachlor epoxide	9.66933	1.0	0.09	16.6667	ND	58.0	64 - 89	4.49	20	M2
Heptachlor epoxide [2C]	9.85367	1.0	0.09	16.6667	ND	59.1	64 - 89	5.71	20	M2
Methoxychlor	11.9380	5.0	0.18	16.6667	ND	71.6	67 - 109	0.442	20	
Methoxychlor [2C]	11.8327	5.0	0.18	16.6667	ND	71.0	67 - 109	2.11	20	
Surrogate: Decachlorobiphenyl	8.561			16.6667		51.4	43 - 84		<u> </u>	
Surrogate: Decachlorobiphenyl [8.023			16.6667		48.1	43 - 84			
Surrogate: Tetrachloro-m-xylene	10.01			16.6667		60.1	54 - 118			
Surrogate: Tetrachloro-m-xylene	9.794			16.6667		58.8	54 - 118			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Batch B8K0014 - GCSEMI PCB/PEST S	

4,4'-DDD ND 2.0 0.07 4,4'-DDD [2C] ND 2.0 0.07 4,4'-DDE ND 2.0 0.05 4,4'-DDE [2C] ND 2.0 0.10 4,4'-DDT [2C] ND 2.0 0.10 Aldrin ND 1.0 0.04 Aldrin [2C] ND 1.0 0.04 Aldrin [2C] ND 1.0 0.11 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.12 alpha-Chlordane ND 1.0 0.12 beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	Blank (B8K0014-BLK1)			
4,4'-DDE ND 2.0 0.05 4,4'-DDE [2C] ND 2.0 0.05 4,4'-DDT ND 2.0 0.10 4,4'-DDT [2C] ND 2.0 0.10 Aldrin ND 1.0 0.04 Aldrin [2C] ND 1.0 0.04 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.12 alpha-Chlordane ND 1.0 0.12 beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	4,4'-DDD	ND	2.0	0.07
4,4'-DDE [2C] ND 2.0 0.05 4,4'-DDT ND 2.0 0.10 4,4'-DDT [2C] ND 2.0 0.10 Aldrin ND 1.0 0.04 Aldrin [2C] ND 1.0 0.04 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.12 alpha-Chlordane [2C] ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	4,4'-DDD [2C]	ND	2.0	0.07
4,4'-DDT ND 2.0 0.10 4,4'-DDT [2C] ND 2.0 0.10 Aldrin ND 1.0 0.04 Aldrin [2C] ND 1.0 0.04 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.12 alpha-Chlordane ND 1.0 0.12 alpha-Chlordane [2C] ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	4,4'-DDE	ND	2.0	0.05
4,4'-DDT ND 2.0 0.10 4,4'-DDT [2C] ND 2.0 0.10 Aldrin ND 1.0 0.04 Aldrin [2C] ND 1.0 0.01 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.12 alpha-Chlordane ND 1.0 0.12 alpha-Chlordane [2C] ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	4,4'-DDE [2C]	ND	2.0	0.05
Aldrin ND 1.0 0.04 Aldrin [2C] ND 1.0 0.04 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.12 alpha-Chlordane [2C] ND 1.0 0.12 beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06		ND	2.0	0.10
Aldrin [2C] ND 1.0 0.04 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.12 alpha-Chlordane [2C] ND 1.0 0.12 beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	4,4'-DDT [2C]	ND	2.0	0.10
alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.12 alpha-Chlordane [2C] ND 1.0 0.12 beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	Aldrin	ND	1.0	0.04
Alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.12 alpha-Chlordane [2C] ND 1.0 0.12 beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	Aldrin [2C]	ND	1.0	0.04
alpha-Chlordane ND 1.0 0.12 alpha-Chlordane [2C] ND 1.0 0.12 beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	alpha-BHC	ND	1.0	0.11
alpha-Chlordane [2C] ND 1.0 0.12 beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	alpha-BHC [2C]	ND	1.0	0.11
beta-BHC ND 1.0 0.06 beta-BHC [2C] ND 1.0 0.06	alpha-Chlordane	ND	1.0	0.12
beta-BHC [2C] ND 1.0 0.06	alpha-Chlordane [2C]	ND	1.0	0.12
	beta-BHC	ND	1.0	0.06
	beta-BHC [2C]	ND	1.0	0.06
Chlordane ND 8.5 1.1	Chlordane	ND	8.5	1.1
Chlordane [2C] ND 8.5 1.1	Chlordane [2C]	ND	8.5	1.1
delta-BHC ND 1.0 0.03	delta-BHC	ND	1.0	0.03
delta-BHC [2C] ND 1.0 0.03	delta-BHC [2C]	ND	1.0	0.03
Dieldrin ND 2.0 0.13	Dieldrin	ND	2.0	0.13
Dieldrin [2C] ND 2.0 0.13	Dieldrin [2C]	ND	2.0	0.13
Endosulfan I ND 1.0 0.10	Endosulfan I	ND	1.0	0.10
Endosulfan I [2C] ND 1.0 0.10	Endosulfan I [2C]	ND	1.0	0.10
Endosulfan II ND 2.0 0.03	Endosulfan II	ND	2.0	0.03
Endosulfan II [2C] ND 2.0 0.03	Endosulfan II [2C]	ND	2.0	0.03
Endosulfan sulfate ND 2.0 0.08	Endosulfan sulfate	ND	2.0	0.08
Endosulfan Sulfate [2C] ND 2.0 0.08	Endosulfan Sulfate [2C]	ND	2.0	0.08
Endrin ND 2.0 0.04	Endrin	ND	2.0	0.04
Endrin [2C] ND 2.0 0.04	Endrin [2C]	ND	2.0	0.04
Endrin aldehyde ND 2.0 0.31	Endrin aldehyde	ND	2.0	0.31
Endrin aldehyde [2C] ND 2.0 0.31	Endrin aldehyde [2C]	ND	2.0	0.31
Endrin ketone ND 2.0 0.13	Endrin ketone	ND	2.0	0.13
Endrin ketone [2C] ND 2.0 0.13	Endrin ketone [2C]	ND	2.0	0.13
gamma-BHC ND 1.0 0.10	gamma-BHC	ND	1.0	0.10
gamma-BHC [2C] ND 1.0 0.10	gamma-BHC [2C]	ND	1.0	0.10
gamma-Chlordane ND 1.0 0.07	gamma-Chlordane	ND	1.0	0.07
gamma-Chlordane [2C] ND 1.0 0.07	gamma-Chlordane [2C]	ND	1.0	0.07
Heptachlor ND 1.0 0.05	Heptachlor	ND	1.0	0.05
Heptachlor [2C] ND 1.0 0.05	Heptachlor [2C]	ND	1.0	0.05
Heptachlor epoxide ND 1.0 0.09	Heptachlor epoxide	ND	1.0	0.09
Heptachlor epoxide [2C] ND 1.0 0.09	Heptachlor epoxide [2C]	ND	1.0	0.09
Methoxychlor ND 5.0 0.18	Methoxychlor	ND	5.0	0.18

Prepared: 11/1/2018 Analyzed: 11/1/2018

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0014 - GCSEMI_PC	B/PEST_S (co	ontinued)								
Blank (B8K0014-BLK1) - Continue	ed				Prepared	d: 11/1/2018 A	Analyzed: 11/1/	2018		
Methoxychlor [2C]	ND	5.0	0.18							
Гохарhene	ND	50	4.7							
Toxaphene [2C]	ND	50	4.7							
Surrogate: Decachlorobiphenyl	10.64			16.6667		63.8	43 - 84			
Surrogate: Decachlorobiphenyl [7.627			16.6667		45.8	43 - 84			
Surrogate: Tetrachloro-m-xylene	11.88			16.6667		71.3	54 - 118			
Surrogate: Tetrachloro-m-xylene	11.63			16.6667		69.8	54 - 118			
LCS (B8K0014-BS1)					Prepared	d: 11/1/2018 A	Analyzed: 11/1/	2018		
,4′-DDD	13.9032	2.0	0.07	16.6667		83.4	73 - 110			
,4'-DDD [2C]	12.8760	2.0	0.07	16.6667		77.3	73 - 110			
,4´-DDE	12.7042	2.0	0.05	16.6667		76.2	71 - 99			
I,4′-DDE [2C]	12.9537	2.0	0.05	16.6667		77.7	71 - 99			
,4′-DDT	9.34467	2.0	0.10	16.6667		56.1	51 - 106			
,4′-DDT [2C]	11.3953	2.0	0.10	16.6667		68.4	51 - 106			
ldrin	12.4868	1.0	0.04	16.6667		74.9	67 - 95			
ldrin [2C]	12.3138	1.0	0.04	16.6667		73.9	67 - 95			
lpha-BHC	12.6787	1.0	0.11	16.6667		76.1	67 - 94			
lpha-BHC [2C]	12.6658	1.0	0.11	16.6667		76.0	67 - 94			
lpha-Chlordane	12.7655	1.0	0.12	16.6667		76.6	69 - 99			
lpha-Chlordane [2C]	12.0602	1.0	0.12	16.6667		72.4	69 - 99			
eta-BHC	13.0698	1.0	0.06	16.6667		78.4	67 - 99			
eta-BHC [2C]	13.2680	1.0	0.06	16.6667		79.6	67 - 99			
elta-BHC	15.1275	1.0	0.03	16.6667		90.8	73 - 103			
elta-BHC [2C]	14.7895	1.0	0.03	16.6667		88.7	73 - 103			
Dieldrin	12.1737	2.0	0.13	16.6667		73.0	65 - 93			
Dieldrin [2C]	11.3960	2.0	0.13	16.6667		68.4	65 - 93			
indosulfan I	11.8808	1.0	0.10	16.6667		71.3	65 - 91			
Endosulfan I [2C]	11.1542	1.0	0.10	16.6667		66.9	65 - 91			
Endosulfan II	12.6028	2.0	0.03	16.6667		75.6	65 - 102			
Endosulfan II [2C]	12.0338	2.0	0.03	16.6667		72.2	65 - 102			
Endosulfan sulfate	12.6428	2.0	0.08	16.6667		75.9	64 - 106			
Indosulfan Sulfate [2C]	13.2803	2.0	0.08	16.6667		79.7	64 - 106			
ndrin	13.1450	2.0	0.04	16.6667		78.9	64 - 111			
indrin [2C]	13.1547	2.0	0.04	16.6667		78.9	64 - 111			
Endrin aldehyde	13.4642	2.0	0.31	16.6667		80.8	64 - 109			
indrin aldehyde [2C]	9.40533	2.0	0.31	16.6667		56.4	64 - 109			L4
Endrin ketone	11.0772	2.0	0.13	16.6667		66.5	57 - 101			
Endrin ketone [2C]	12.5242	2.0	0.13	16.6667		75.1	57 - 101			
amma-BHC	12.5142	1.0	0.10	16.6667		75.1	65 - 96			
amma-BHC [2C]	12.6888	1.0	0.10	16.6667		76.1	65 - 96			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Datah DOMANIA CCCEMI DO	D/DECT C/	ntinucd)								
Batch B8K0014 - GCSEMI_PC	D/FES1_S (CO	nunuea)								
LCS (B8K0014-BS1) - Continued					Prepared		Analyzed: 11/1/2	2018		
gamma-Chlordane	12.8535	1.0	0.07	16.6667		77.1	65 - 113			
gamma-Chlordane [2C]	12.1615	1.0	0.07	16.6667		73.0	65 - 113			
Heptachlor	12.6930	1.0	0.05	16.6667		76.2	61 - 96			
Heptachlor [2C]	14.7955	1.0	0.05	16.6667		88.8	61 - 96			
Heptachlor epoxide	11.9672	1.0	0.09	16.6667		71.8	64 - 89			
Heptachlor epoxide [2C]	12.1378	1.0	0.09	16.6667		72.8	64 - 89			
Methoxychlor	16.3872	5.0	0.18	16.6667		98.3	67 - 109			
Methoxychlor [2C]	13.0935	5.0	0.18	16.6667		78.6	67 - 109			
Surrogate: Decachlorobiphenyl	10.95			16.6667		65.7	43 - 84			
Surrogate: Decachlorobiphenyl [7.571			16.6667		45.4	43 - 84			
Surrogate: Tetrachloro-m-xylene	12.06			16.6667		72.3	54 - 118			
Surrogate: Tetrachloro-m-xylene	11.90			16.6667		71.4	54 - 118			
Duplicate (B8K0014-DUP1)		Se	ource: 18040	36-57	Prepared	d: 11/1/2018	Analyzed: 11/1/2	2018		
4,4′-DDD	0.300833	2.0	0.07		ND			NR	20	J
4,4′-DDD [2C]	0.239667	2.0	0.07		ND			NR	20	J
4,4′-DDE	ND	2.0	0.05		ND				20	
4,4′-DDE [2C]	ND	2.0	0.05		ND				20	
4,4´-DDT	ND	2.0	0.10		ND				20	
4,4′-DDT [2C]	ND	2.0	0.10		ND				20	
Aldrin	ND	1.0	0.04		ND				20	
Aldrin [2C]	ND	1.0	0.04		ND				20	
alpha-BHC	ND	1.0	0.11		ND				20	
alpha-BHC [2C]	ND	1.0	0.11		ND				20	
alpha-Chlordane	ND	1.0	0.12		ND				20	
alpha-Chlordane [2C]	ND	1.0	0.12		ND				20	
beta-BHC	ND	1.0	0.06		ND				20	
beta-BHC [2C]	ND	1.0	0.06		ND				20	
delta-BHC	ND	1.0	0.03		ND				20	
delta-BHC [2C]	ND	1.0	0.03		ND				20	
Dieldrin	ND	2.0	0.13		ND				20	
Dieldrin [2C]	ND	2.0	0.13		ND				20	
Endosulfan I	ND	1.0	0.10		ND				20	
Endosulfan I [2C]	ND	1.0	0.10		ND				20	
Endosulfan II	ND	2.0	0.03		ND				20	
Endosulfan II [2C]	ND	2.0	0.03		ND				20	
Endosulfan sulfate	ND	2.0	0.08		ND				20	
Endosulfan Sulfate [2C]	ND	2.0	0.08		ND				20	
Endrin	ND	2.0	0.04		ND				20	
Endrin [2C]	ND	2.0	0.04		ND				20	
Endrin aldehyde	ND	2.0	0.31		ND				20	

Endosulfan II [2C]

10.5560

2.0

Certificate of Analysis

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
					· · · · · ·					
Batch B8K0014 - GCSEMI_PC	B/PEST_S (co	ontinued)								
Duplicate (B8K0014-DUP1) - Cont	inued	So	ource: 18040	36-57	Prepared	: 11/1/2018	Analyzed: 11/1/	2018		
ndrin aldehyde [2C]	ND	2.0	0.31		ND				20	
ndrin ketone	ND	2.0	0.13		ND				20	
ndrin ketone [2C]	ND	2.0	0.13		ND				20	
amma-BHC	ND	1.0	0.10		ND				20	
amma-BHC [2C]	ND	1.0	0.10		ND				20	
amma-Chlordane	ND	1.0	0.07		ND				20	
amma-Chlordane [2C]	ND	1.0	0.07		ND				20	
eptachlor	ND	1.0	0.05		ND				20	
eptachlor [2C]	ND	1.0	0.05		ND				20	
eptachlor epoxide	ND	1.0	0.09		ND				20	
eptachlor epoxide [2C]	ND	1.0	0.09		ND				20	
lethoxychlor	ND	5.0	0.18		ND				20	
fethoxychlor [2C]	ND	5.0	0.18		ND				20	
Surrogate: Decachlorobiphenyl	12.57			16.6667		75.4	43 - 84			
Surrogate: Decachlorobiphenyl [11.34			16.6667		68.0	43 - 84			
Surrogate: Tetrachloro-m-xylene	10.88			16.6667		65.3	54 - 118			
Surrogate: Tetrachloro-m-xylene	11.83			16.6667		71.0	54 - 118			
Matrix Spike (B8K0014-MS1)		So	ource: 18040	36-60	Prepared	: 11/1/2018	Analyzed: 11/1/	2018		
,4′-DDD	14.9093	2.0	0.07	16.6667	0.134667	88.6	73 - 110			
4'-DDD [2C]	14.4007	2.0	0.07	16.6667	0.124500	85.7	73 - 110			
4'-DDE	11.6627	2.0	0.05	16.6667	ND	70.0	71 - 99			M2
4′-DDE [2C]	10.7557	2.0	0.05	16.6667	ND	64.5	71 - 99			M2
4´-DDT	2.55500	2.0	0.10	16.6667	ND	15.3	51 - 106			M2
4´-DDT [2C]	3.94717	2.0	0.10	16.6667	ND	23.7	51 - 106			M2
ldrin	10.3393	1.0	0.04	16.6667	ND	62.0	67 - 95			M2
ldrin [2C]	10.2443	1.0	0.04	16.6667	ND	61.5	67 - 95			M2
pha-BHC	10.0763	1.0	0.11	16.6667	ND	60.5	67 - 94			M2
pha-BHC [2C]	10.1048	1.0	0.11	16.6667	ND	60.6	67 - 94			M2
pha-Chlordane	10.8088	1.0	0.12	16.6667	ND	64.9	69 - 99			M2
pha-Chlordane [2C]	10.1252	1.0	0.12	16.6667	0.121500	60.0	69 - 99			M2
eta-BHC	10.4625	1.0	0.06	16.6667	ND	62.8	67 - 99			M2
eta-BHC [2C]	10.5622	1.0	0.06	16.6667	ND	63.4	67 - 99			M2
elta-BHC	12.6160	1.0	0.03	16.6667	ND	75.7	73 - 103			
elta-BHC [2C]	12.1970	1.0	0.03	16.6667	ND	73.2	73 - 103			
ieldrin	11.2695	2.0	0.13	16.6667	ND	67.6	65 - 93			
ieldrin [2C]	9.75783	2.0	0.13	16.6667	ND	58.5	65 - 93			M2
ndosulfan I	9.89167	1.0	0.10	16.6667	ND	59.3	65 - 91			M2
ndosulfan I [2C]	9.65383	1.0	0.10	16.6667	ND	57.9	65 - 91			M2
ndosulfan II	11.4667	2.0	0.03	16.6667	ND	68.8	65 - 102			
1 10 11 00	10.5560	• •	0.00	14444	3.775	(2.2	65 100			

M2

65 - 102

16.6667

ND

63.3

0.03

Dieldrin

Certificate of Analysis

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B8K0014 - GCSEMI_PC	B/PEST_S (co	ntinued)								
Matrix Spike (B8K0014-MS1) - Co	ontinued		Source: 1804	036-60	Prepared:	11/1/2018	Analyzed: 11/1/2	018		
Endosulfan sulfate	11.9930	2.0	0.08	16.6667	ND	72.0	64 - 106			
Endosulfan Sulfate [2C]	10.7772	2.0	0.08	16.6667	ND	64.7	64 - 106			
Endrin	10.8493	2.0	0.04	16.6667	ND	65.1	64 - 111			
Endrin [2C]	10.9987	2.0	0.04	16.6667	ND	66.0	64 - 111			
Endrin aldehyde	12.8488	2.0	0.31	16.6667	ND	77.1	64 - 109			
Endrin aldehyde [2C]	7.51050	2.0	0.31	16.6667	ND	45.1	64 - 109			M2
Endrin ketone	9.97383	2.0	0.13	16.6667	ND	59.8	57 - 101			
Endrin ketone [2C]	10.3603	2.0	0.13	16.6667	ND	62.2	57 - 101			
gamma-BHC	9.56767	1.0	0.10	16.6667	ND	57.4	65 - 96			M2
gamma-BHC [2C]	10.1465	1.0	0.10	16.6667	ND	60.9	65 - 96			M2
gamma-Chlordane	10.6227	1.0	0.07	16.6667	0.088	63.2	65 - 113			M2
gamma-Chlordane [2C]	10.0658	1.0	0.07	16.6667	ND	60.4	65 - 113			M2
Heptachlor	9.37283	1.0	0.05	16.6667	ND	56.2	61 - 96			M2
Heptachlor [2C]	12.4852	1.0	0.05	16.6667	ND	74.9	61 - 96			
Heptachlor epoxide	10.9458	1.0	0.09	16.6667	ND	65.7	64 - 89			
Heptachlor epoxide [2C]	10.3495	1.0	0.09	16.6667	ND	62.1	64 - 89			M2
Methoxychlor	14.5348	5.0	0.18	16.6667	ND	87.2	67 - 109			
Methoxychlor [2C]	4.98300	5.0	0.18	16.6667	ND	29.9	67 - 109			M2, J
Surrogate: Decachlorobiphenyl	6.921			16.6667		41.5	43 - 84			S10
Surrogate: Decachlorobiphenyl [5.440			16.6667		32.6	43 - 84			S10
Surrogate: Tetrachloro-m-xylene	6.684			16.6667		40.1	54 - 118			S10
Surrogate: Tetrachloro-m-xylene	6.445			16.6667		38.7	54 - 118			S10
Matrix Spike Dup (B8K0014-MSD	01)		Source: 1804	036-60	Prepared:	11/1/2018	Analyzed: 11/1/2	018		
4,4′-DDD	13.9287	2.0	0.07	16.6667	0.134667	82.8	73 - 110	6.80	20	
4,4'-DDD [2C]	12.9893	2.0	0.07	16.6667	0.124500	77.2	73 - 110	10.3	20	
4,4'-DDE	10.9975	2.0	0.05	16.6667	ND	66.0	71 - 99	5.87	20	M2
4,4'-DDE [2C]	10.0180	2.0	0.05	16.6667	ND	60.1	71 - 99	7.10	20	M2
4,4'-DDT	2.62467	2.0	0.10	16.6667	ND	15.7	51 - 106	2.69	20	M2
4,4'-DDT [2C]	3.16300	2.0	0.10	16.6667	ND	19.0	51 - 106	22.1	20	M2, R3
Aldrin	10.2338	1.0	0.04	16.6667	ND	61.4	67 - 95	1.03	20	M2
Aldrin [2C]	9.48000	1.0	0.04	16.6667	ND	56.9	67 - 95	7.75	20	M2
alpha-BHC	9.41183	1.0	0.11	16.6667	ND	56.5	67 - 94	6.82	20	M2
alpha-BHC [2C]	9.30017	1.0	0.11	16.6667	ND	55.8	67 - 94	8.29	20	M2
alpha-Chlordane	10.2037	1.0	0.12	16.6667	ND	61.2	69 - 99	5.76	20	M2
alpha-Chlordane [2C]	9.44867	1.0	0.12	16.6667	0.121500	56.0	69 - 99	6.91	20	M2
beta-BHC	9.78667	1.0	0.06	16.6667	ND	58.7	67 - 99	6.68	20	M2
beta-BHC [2C]	9.73367	1.0	0.06	16.6667	ND	58.4	67 - 99	8.16	20	M2
delta-BHC	11.7647	1.0	0.03	16.6667	ND	70.6	73 - 103	6.98	20	M2
delta-BHC [2C]	11.2465	1.0	0.03	16.6667	ND	67.5	73 - 103	8.11	20	M2
B: 11:	10.6625	• •	0.12	16666	3.775	64.0	65.00		• •	3.70

M2

65 - 93

5.52

20

16.6667

ND

64.0

0.13

10.6637

2.0

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

MDL

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/09/2018

PQL

Result

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

Spike

Source

Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0014 - GCSEMI_PC	CB/PEST_S (co	ntinued)								
Matrix Spike Dup (B8K0014-MSI	O1) - Continued	So	ource: 18040	36-60	Prepare	d: 11/1/2018	Analyzed: 11/1/	2018		
Dieldrin [2C]	9.17683	2.0	0.13	16.6667	ND	55.1	65 - 93	6.14	20	M2
Endosulfan I	9.32050	1.0	0.10	16.6667	ND	55.9	65 - 91	5.95	20	M2
Endosulfan I [2C]	9.02917	1.0	0.10	16.6667	ND	54.2	65 - 91	6.69	20	M2
Endosulfan II	10.7755	2.0	0.03	16.6667	ND	64.7	65 - 102	6.21	20	M2
Endosulfan II [2C]	9.29100	2.0	0.03	16.6667	ND	55.7	65 - 102	12.7	20	M2
Endosulfan sulfate	11.3768	2.0	0.08	16.6667	ND	68.3	64 - 106	5.27	20	

Methoxychlor 5.0 0.18 ND 85.9 67 - 109 1.54 20 14.3120 16.6667 20 Methoxychlor [2C] 5.15833 5.0 0.1816.6667 ND 30.9 67 - 109 3.46 M2Surrogate: Decachlorobiphenyl 5.170 16.6667 31.0 43 - 84 S10 5.013 30.1 43 - 84 S10 Surrogate: Decachlorobiphenyl [16.6667 Surrogate: Tetrachloro-m-xylene 37.7 54 - 118 S10 6.284 16.6667 S10 Surrogate: Tetrachloro-m-xylene 5.994 16.6667 36.0 54 - 118

RPD

% Rec

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

$Batch\ B8K0028-GCSEMI_PCB/PEST_W$

Blank (B8K0028-BLK1)

Dialik (Dokuu20-DLK1)			
4,4′-DDD	ND	0.05	0.006
4,4'-DDD [2C]	ND	0.05	0.006
4,4′-DDE	ND	0.05	0.005
4,4'-DDE [2C]	ND	0.05	0.005
4,4'-DDT	ND	0.05	0.01
4,4'-DDT [2C]	ND	0.05	0.01
Aldrin	ND	0.02	0.002
Aldrin [2C]	ND	0.02	0.002
alpha-BHC	ND	0.02	0.002
alpha-BHC [2C]	ND	0.02	0.002
alpha-Chlordane	ND	0.02	0.003
alpha-Chlordane [2C]	ND	0.02	0.003
beta-BHC	ND	0.02	0.002
beta-BHC [2C]	ND	0.02	0.002
Chlordane	ND	0.25	0.03
Chlordane [2C]	ND	0.25	0.03
delta-BHC	ND	0.02	0.002
delta-BHC [2C]	ND	0.02	0.002
Dieldrin	ND	0.05	0.002
Dieldrin [2C]	ND	0.05	0.002
Endosulfan I	ND	0.02	0.005
Endosulfan I [2C]	ND	0.02	0.005
Endosulfan II	ND	0.05	0.009
Endosulfan II [2C]	ND	0.05	0.009
Endosulfan sulfate	ND	0.05	0.01
Endosulfan Sulfate [2C]	ND	0.05	0.01
Endrin	ND	0.05	0.005
Endrin [2C]	ND	0.05	0.005
Endrin aldehyde	ND	0.05	0.003
Endrin aldehyde [2C]	ND	0.05	0.003
Endrin ketone	ND	0.05	0.003
Endrin ketone [2C]	ND	0.05	0.003
gamma-BHC	ND	0.02	0.002
gamma-BHC [2C]	ND	0.02	0.002
gamma-Chlordane	ND	0.02	0.002
gamma-Chlordane [2C]	ND	0.02	0.002
Heptachlor	ND	0.02	0.002
Heptachlor [2C]	ND	0.02	0.002
Heptachlor epoxide	ND	0.02	0.002
Heptachlor epoxide [2C]	ND	0.02	0.002
Methoxychlor	ND	0.25	0.008

Prepared: 11/1/2018 Analyzed: 11/1/2018

gamma-BHC [2C]

Certificate of Analysis

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

MDL

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

PQL

Result

0.373935

0.02

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

Spike

Source

Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0028 - GCSEMI_PC	B/PEST_W (co	ontinued)								
Blank (B8K0028-BLK1) - Continu	ed				Prepare	d: 11/1/2018 A	Analyzed: 11/1/	/2018		
Methoxychlor [2C]	ND	0.25	0.008							
Toxaphene	ND	2.5	0.23							
Toxaphene [2C]	ND	2.5	0.23							
Surrogate: Decachlorobiphenyl	0.2466			0.500000		49.3	8 - 128			
Surrogate: Decachlorobiphenyl [0.2441			0.500000		48.8	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.3449			0.500000		69.0	32 - 126			
Surrogate: Tetrachloro-m-xylene	0.3434			0.500000		68.7	32 - 126			
LCS (B8K0028-BS1)	V.5 75 7			0.20000	Drengre		Analyzed: 11/2	/2018		
4'-DDD	0.379200	0.05	0.006	0.500000	Trepare	u. 11/1/2018 / 75.8	56 - 126	2010		
1,4′-DDD [2C]	0.379200	0.05	0.006	0.500000		81.0	56 - 126			
1,4'-DDD [2C]	0.403043	0.05	0.005	0.500000		81.6	53 - 127			
1,4'-DDE [2C]	0.366535	0.05	0.005	0.500000		73.3	53 - 127			
,4'-DDT	0.344815	0.05	0.003	0.500000		69.0	27 - 134			
1,4'-DDT [2C]	0.402390	0.05	0.01	0.500000		80.5	27 - 134			
Aldrin	0.387250	0.03	0.002	0.500000		77.4	53 - 123			
Aldrin [2C]	0.361420	0.02	0.002	0.500000		72.3	53 - 123			
lpha-BHC	0.369530	0.02	0.002	0.500000		73.9	58 - 120			
lpha-BHC [2C]	0.374550	0.02	0.002	0.500000		74.9	58 - 120			
lpha-Chlordane	0.396235	0.02	0.003	0.500000		79.2	55 - 123			
lpha-Chlordane [2C]	0.357070	0.02	0.003	0.500000		71.4	55 - 123			
peta-BHC	0.365480	0.02	0.002	0.500000		73.1	53 - 116			
peta-BHC [2C]	0.373945	0.02	0.002	0.500000		74.8	53 - 116			
lelta-BHC	0.384510	0.02	0.002	0.500000		76.9	27 - 136			
lelta-BHC [2C]	0.426360	0.02	0.002	0.500000		85.3	27 - 136			
Dieldrin	0.372235	0.05	0.002	0.500000		74.4	55 - 114			
Dieldrin [2C]	0.362160	0.05	0.002	0.500000		72.4	55 - 114			
Endosulfan I	0.362830	0.02	0.005	0.500000		72.6	52 - 117			
Endosulfan I [2C]	0.341905	0.02	0.005	0.500000		68.4	52 - 117			
Endosulfan II	0.383600	0.05	0.009	0.500000		76.7	53 - 128			
Endosulfan II [2C]	0.399730	0.05	0.009	0.500000		79.9	53 - 128			
Endosulfan sulfate	0.393445	0.05	0.01	0.500000		78.7	49 - 122			
Endosulfan Sulfate [2C]	0.416720	0.05	0.01	0.500000		83.3	49 - 122			
Endrin	0.397815	0.05	0.005	0.500000		79.6	59 - 123			
Endrin [2C]	0.420335	0.05	0.005	0.500000		84.1	59 - 123			
Endrin aldehyde	0.397955	0.05	0.003	0.500000		79.6	49 - 140			
ndrin aldehyde [2C]	0.416710	0.05	0.003	0.500000		83.3	49 - 140			
ndrin ketone	0.373215	0.05	0.003	0.500000		74.6	47 - 121			
ndrin ketone [2C]	0.418925	0.05	0.003	0.500000		83.8	47 - 121			
amma-BHC	0.357170	0.02	0.002	0.500000		71.4	57 - 116			
T. T. C.										

RPD

% Rec

0.500000

74.8

57 - 116

0.002

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
	n (nnor									
Batch B8K0028 - GCSEMI_PC	B/PEST_W (c	ontinued)								
LCS (B8K0028-BS1) - Continued					Prepared	d: 11/1/2018 A	Analyzed: 11/2/	2018		
gamma-Chlordane	0.385415	0.02	0.002	0.500000		77.1	53 - 120			
gamma-Chlordane [2C]	0.356295	0.02	0.002	0.500000		71.3	53 - 120			
Heptachlor	0.379110	0.02	0.002	0.500000		75.8	55 - 121			
Heptachlor [2C]	0.401925	0.02	0.002	0.500000		80.4	55 - 121			
Heptachlor epoxide	0.373855	0.02	0.002	0.500000		74.8	54 - 113			
Heptachlor epoxide [2C]	0.362745	0.02	0.002	0.500000		72.5	54 - 113			
Methoxychlor	0.443430	0.25	0.008	0.500000		88.7	47 - 135			
Methoxychlor [2C]	0.470865	0.25	0.008	0.500000		94.2	47 - 135			
Surrogate: Decachlorobiphenyl	0.3939			0.500000		78.8	8 - 128			
Surrogate: Decachlorobiphenyl [0.3103			0.500000		62.1	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.3537			0.500000		70.7	32 - 126			
Surrogate: Tetrachloro-m-xylene	0.3493			0.500000		69.9	32 - 126			
LCS Dup (B8K0028-BSD1)					Prepared	d: 11/1/2018 A	Analyzed: 11/2/	2018		
,4′-DDD	0.388890	0.05	0.006	0.500000		77.8	56 - 126	2.52	20	
i,4'-DDD [2C]	0.402480	0.05	0.006	0.500000		80.5	56 - 126	0.635	20	
,4′-DDE	0.418375	0.05	0.005	0.500000		83.7	53 - 127	2.45	20	
,4'-DDE [2C]	0.365050	0.05	0.005	0.500000		73.0	53 - 127	0.406	20	
1,4'-DDT	0.354820	0.05	0.01	0.500000		71.0	27 - 134	2.86	20	
4,4'-DDT [2C]	0.398195	0.05	0.01	0.500000		79.6	27 - 134	1.05	20	
Aldrin	0.398060	0.02	0.002	0.500000		79.6	53 - 123	2.75	20	
Aldrin [2C]	0.363855	0.02	0.002	0.500000		72.8	53 - 123	0.671	20	
alpha-BHC	0.377015	0.02	0.002	0.500000		75.4	58 - 120	2.01	20	
alpha-BHC [2C]	0.370050	0.02	0.002	0.500000		74.0	58 - 120	1.21	20	
alpha-Chlordane	0.405410	0.02	0.003	0.500000		81.1	55 - 123	2.29	20	
llpha-Chlordane [2C]	0.356800	0.02	0.003	0.500000		71.4	55 - 123	0.0756	20	
oeta-BHC	0.371120	0.02	0.002	0.500000		74.2	53 - 116	1.53	20	
peta-BHC [2C]	0.370415	0.02	0.002	0.500000		74.1	53 - 116	0.948	20	
delta-BHC	0.394235	0.02	0.002	0.500000		78.8	27 - 136	2.50	20	
delta-BHC [2C]	0.424475	0.02	0.002	0.500000		84.9	27 - 136	0.443	20	
Dieldrin	0.382085	0.05	0.002	0.500000		76.4	55 - 114	2.61	20	
Dieldrin [2C]	0.361305	0.05	0.002	0.500000		72.3	55 - 114	0.236	20	
Endosulfan I	0.375090	0.02	0.005	0.500000		75.0	52 - 117	3.32	20	
Endosulfan I [2C]	0.342745	0.02	0.005	0.500000		68.5	52 - 117	0.245	20	
Endosulfan II	0.397475	0.05	0.009	0.500000		79.5	53 - 128	3.55	20	
Endosulfan II [2C]	0.400750	0.05	0.009	0.500000		80.2	53 - 128	0.255	20	
Endosulfan sulfate	0.389895	0.05	0.01	0.500000		78.0	49 - 122	0.906	20	
Endosulfan Sulfate [2C]	0.415930	0.05	0.01	0.500000		83.2	49 - 122	0.190	20	
Endrin	0.406560	0.05	0.005	0.500000		81.3	59 - 123	2.17	20	
Endrin [2C]	0.419340	0.05	0.005	0.500000		83.9	59 - 123	0.237	20	
Endrin aldehyde	0.403840	0.05	0.003	0.500000		80.8	49 - 140	1.47	20	

Surrogate: Tetrachloro-m-xylene

0.3447

Certificate of Analysis

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0028 - GCSEMI_PC	B/PEST_W (co	ontinued)								
LCS Dup (B8K0028-BSD1) - Conti	inued				Prepared	d: 11/1/2018 A	Analyzed: 11/2/	2018		
Endrin aldehyde [2C]	0.416495	0.05	0.003	0.500000		83.3	49 - 140	0.0516	20	
Endrin ketone	0.376780	0.05	0.003	0.500000		75.4	47 - 121	0.951	20	
Endrin ketone [2C]	0.416535	0.05	0.003	0.500000		83.3	47 - 121	0.572	20	
gamma-BHC	0.363865	0.02	0.002	0.500000		72.8	57 - 116	1.86	20	
gamma-BHC [2C]	0.370700	0.02	0.002	0.500000		74.1	57 - 116	0.869	20	
gamma-Chlordane	0.394520	0.02	0.002	0.500000		78.9	53 - 120	2.33	20	
gamma-Chlordane [2C]	0.355810	0.02	0.002	0.500000		71.2	53 - 120	0.136	20	
Heptachlor	0.390660	0.02	0.002	0.500000		78.1	55 - 121	3.00	20	
Heptachlor [2C]	0.406325	0.02	0.002	0.500000		81.3	55 - 121	1.09	20	
Heptachlor epoxide	0.386320	0.02	0.002	0.500000		77.3	54 - 113	3.28	20	
Heptachlor epoxide [2C]	0.362865	0.02	0.002	0.500000		72.6	54 - 113	0.0331	20	
Methoxychlor	0.420310	0.25	0.008	0.500000		84.1	47 - 135	5.35	20	
Methoxychlor [2C]	0.460675	0.25	0.008	0.500000		92.1	47 - 135	2.19	20	
Surrogate: Decachlorobiphenyl	0.4287			0.500000		85.7	8 - 128			
Surrogate: Decachlorobiphenyl [0.3196			0.500000		63.9	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.3607			0.500000		72.1	32 - 126			

0.500000

68.9

32 - 126

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Batch B8K0267 - GCSEMII PCB/PEST S	

Blank (B8K0267-BLK1)			
4,4′-DDD	ND	2.0	0.07
4,4'-DDD [2C]	ND	2.0	0.07
4,4′-DDE	ND	2.0	0.05
4,4'-DDE [2C]	ND	2.0	0.05
4,4′-DDT	ND	2.0	0.10
4,4'-DDT [2C]	ND	2.0	0.10
Aldrin	ND	1.0	0.04
Aldrin [2C]	ND	1.0	0.04
alpha-BHC	ND	1.0	0.11
alpha-BHC [2C]	ND	1.0	0.11
alpha-Chlordane	ND	1.0	0.12
alpha-Chlordane [2C]	ND	1.0	0.12
beta-BHC	ND	1.0	0.06
beta-BHC [2C]	ND	1.0	0.06
Chlordane	ND	8.5	1.1
Chlordane [2C]	ND	8.5	1.1
delta-BHC	ND	1.0	0.03
delta-BHC [2C]	ND	1.0	0.03
Dieldrin	ND	2.0	0.13
Dieldrin [2C]	ND	2.0	0.13
Endosulfan I	ND	1.0	0.10
Endosulfan I [2C]	ND	1.0	0.10
Endosulfan II	ND	2.0	0.03
Endosulfan II [2C]	ND	2.0	0.03
Endosulfan sulfate	ND	2.0	0.08
Endosulfan Sulfate [2C]	ND	2.0	0.08
Endrin	ND	2.0	0.04
Endrin [2C]	ND	2.0	0.04
Endrin aldehyde	ND	2.0	0.31
Endrin aldehyde [2C]	ND	2.0	0.31
Endrin ketone	ND	2.0	0.13
Endrin ketone [2C]	ND	2.0	0.13
gamma-BHC	ND	1.0	0.10
gamma-BHC [2C]	ND	1.0	0.10
gamma-Chlordane	ND	1.0	0.07
gamma-Chlordane [2C]	ND	1.0	0.07
Heptachlor	ND	1.0	0.05
Heptachlor [2C]	ND	1.0	0.05
Heptachlor epoxide	ND	1.0	0.09
Heptachlor epoxide [2C]	ND	1.0	0.09
Methoxychlor	ND	5.0	0.18

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Ratah RQV0267 CCSEMI DCI	D/DECT C/aa	ntinuad)								
Batch B8K0267 - GCSEMI_PCI		ontinuea)								
Blank (B8K0267-BLK1) - Continue	ed				Prepared	d: 11/7/2018 A	Analyzed: 11/7/	2018		
Methoxychlor [2C]	ND	5.0	0.18							
Toxaphene	ND	50	4.7							
Toxaphene [2C]	ND	50	4.7							
Surrogate: Decachlorobiphenyl	10.08			16.6667		60.5	43 - 84			
Surrogate: Decachlorobiphenyl [6.913			16.6667		41.5	43 - 84			S10
Surrogate: Tetrachloro-m-xylene	10.10			16.6667		60.6	54 - 118			
Surrogate: Tetrachloro-m-xylene	9.827			16.6667		59.0	54 - 118			
LCS (B8K0267-BS1)					Prepared	d: 11/7/2018 A	Analyzed: 11/7/	2018		
,4′-DDD	13.7220	2.0	0.07	16.6667		82.3	73 - 110			
,4'-DDD [2C]	12.5518	2.0	0.07	16.6667		75.3	73 - 110			
,4′-DDE	13.0270	2.0	0.05	16.6667		78.2	71 - 99			
,4′-DDE [2C]	12.6520	2.0	0.05	16.6667		75.9	71 - 99			
,4′-DDT	11.0742	2.0	0.10	16.6667		66.4	51 - 106			
,4'-DDT [2C]	14.1153	2.0	0.10	16.6667		84.7	51 - 106			
lldrin	13.5508	1.0	0.04	16.6667		81.3	67 - 95			
Aldrin [2C]	12.3465	1.0	0.04	16.6667		74.1	67 - 95			
lpha-BHC	13.1848	1.0	0.11	16.6667		79.1	67 - 94			
lpha-BHC [2C]	13.4277	1.0	0.11	16.6667		80.6	67 - 94			
lpha-Chlordane	13.9960	1.0	0.12	16.6667		84.0	69 - 99			
lpha-Chlordane [2C]	12.0670	1.0	0.12	16.6667		72.4	69 - 99			
eta-BHC	13.0412	1.0	0.06	16.6667		78.2	67 - 99			
eta-BHC [2C]	13.2955	1.0	0.06	16.6667		79.8	67 - 99			
lelta-BHC	15.0027	1.0	0.03	16.6667		90.0	73 - 103			
elta-BHC [2C]	15.0283	1.0	0.03	16.6667		90.2	73 - 103			
Dieldrin	12.8203	2.0	0.13	16.6667		76.9	65 - 93			
Dieldrin [2C]	12.0270	2.0	0.13	16.6667		72.2	65 - 93			
Endosulfan I	12.8695	1.0	0.10	16.6667		77.2	65 - 91			
indosulfan I [2C]	11.4158	1.0	0.10	16.6667		68.5	65 - 91			
Endosulfan II	13.6202	2.0	0.03	16.6667		81.7	65 - 102			
Endosulfan II [2C]	13.3605	2.0	0.03	16.6667		80.2	65 - 102			
Endosulfan sulfate	12.9597	2.0	0.08	16.6667		77.8	64 - 106			
indosulfan Sulfate [2C]	13.7685	2.0	0.08	16.6667		82.6	64 - 106			
ndrin	14.2063	2.0	0.04	16.6667		85.2	64 - 111			
Endrin [2C]	14.5677	2.0	0.04	16.6667		87.4	64 - 111			
Endrin aldehyde	13.9193	2.0	0.31	16.6667		83.5	64 - 109			
ndrin aldehyde [2C]	10.8750	2.0	0.31	16.6667		65.2	64 - 109			
ndrin ketone	12.5095	2.0	0.13	16.6667		75.1	57 - 101			
ndrin ketone [2C]	14.5628	2.0	0.13	16.6667		87.4	57 - 101			
amma-BHC	12.7965	1.0	0.10	16.6667		76.8	65 - 96			
amma-BHC [2C]	13.2672	1.0	0.10	16.6667		79.6	65 - 96			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D / I DOWAGE CCCEMI DC	D/DECT C (
Batch B8K0267 - GCSEMI_PCI	B/PEST_S (co	ontinued)								
LCS (B8K0267-BS1) - Continued					Prepared	d: 11/7/2018 A	Analyzed: 11/7/	2018		
gamma-Chlordane	13.7468	1.0	0.07	16.6667		82.5	65 - 113			
gamma-Chlordane [2C]	12.1368	1.0	0.07	16.6667		72.8	65 - 113			
Heptachlor	14.0737	1.0	0.05	16.6667		84.4	61 - 96			
Heptachlor [2C]	15.4300	1.0	0.05	16.6667		92.6	61 - 96			
Heptachlor epoxide	13.0587	1.0	0.09	16.6667		78.4	64 - 89			
Heptachlor epoxide [2C]	12.1913	1.0	0.09	16.6667		73.1	64 - 89			
Methoxychlor	16.9900	5.0	0.18	16.6667		102	67 - 109			
Methoxychlor [2C]	15.9062	5.0	0.18	16.6667		95.4	67 - 109			
Surrogate: Decachlorobiphenyl	11.51			16.6667		69.0	43 - 84			
Surrogate: Decachlorobiphenyl [7.995			16.6667		48.0	43 - 84			
Surrogate: Tetrachloro-m-xylene	13.33			16.6667		80.0	54 - 118			
Surrogate: Tetrachloro-m-xylene	13.72			16.6667		82.3	54 - 118			
Duplicate (B8K0267-DUP1)		Se	ource: 1804(36-02	Prepared	d: 11/7/2018 A	Analyzed: 11/8/2	2018		
4,4′-DDD	ND	2.0	0.07		ND				20	
4,4′-DDD [2C]	ND	2.0	0.07		ND				20	
4,4′-DDE	ND	2.0	0.05		ND				20	
4,4'-DDE [2C]	ND	2.0	0.05		ND				20	
4,4´-DDT	ND	2.0	0.10		ND				20	
4,4′-DDT [2C]	ND	2.0	0.10		ND				20	
Aldrin	ND	1.0	0.04		ND				20	
Aldrin [2C]	ND	1.0	0.04		ND				20	
alpha-BHC	ND	1.0	0.11		ND				20	
alpha-BHC [2C]	ND	1.0	0.11		ND				20	
alpha-Chlordane	ND	1.0	0.12		ND				20	
alpha-Chlordane [2C]	ND	1.0	0.12		ND				20	
beta-BHC	ND	1.0	0.06		ND				20	
beta-BHC [2C]	ND	1.0	0.06		ND				20	
delta-BHC	ND	1.0	0.03		ND				20	
delta-BHC [2C]	ND	1.0	0.03		ND				20	
Dieldrin	ND	2.0	0.13		ND				20	
Dieldrin [2C]	ND	2.0	0.13		ND				20	
Endosulfan I	ND	1.0	0.10		ND				20	
Endosulfan I [2C]	ND	1.0	0.10		ND				20	
Endosulfan II	ND	2.0	0.03		ND				20	
Endosulfan II [2C]	ND	2.0	0.03		ND				20	
Endosulfan sulfate	ND	2.0	0.08		ND				20	
Endosulfan Sulfate [2C]	ND	2.0	0.08		ND				20	
Endrin	ND	2.0	0.04		ND				20	
Endrin [2C]	ND	2.0	0.04		ND				20	
Endrin aldehyde	ND	2.0	0.31		ND				20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0267 - GCSEMI_PCB	3/PEST_S (co	ntinued)								

Duplicate (B8K0267-DUP1) - Conti	nued		Source: 18040	036-02	Prepared	d: 11/7/2018	Analyzed: 11/8/2018	
Endrin aldehyde [2C]	ND	2.0	0.31		ND			20
Endrin ketone	ND	2.0	0.13		ND			20
Endrin ketone [2C]	ND	2.0	0.13		ND			20
gamma-BHC	ND	1.0	0.10		ND			20
gamma-BHC [2C]	ND	1.0	0.10		ND			20
gamma-Chlordane	ND	1.0	0.07		ND			20
gamma-Chlordane [2C]	ND	1.0	0.07		ND			20
Heptachlor	ND	1.0	0.05		ND			20
Heptachlor [2C]	ND	1.0	0.05		ND			20
Heptachlor epoxide	ND	1.0	0.09		ND			20
Heptachlor epoxide [2C]	ND	1.0	0.09		ND			20
Methoxychlor	ND	5.0	0.18		ND			20
Methoxychlor [2C]	ND	5.0	0.18		ND			20
Surrogate: Decachlorobiphenyl	5.922			16.6667		35.5	43 - 84	S10
Surrogate: Decachlorobiphenyl [4.233			16.6667		25.4	43 - 84	S10
Surrogate: Tetrachloro-m-xylene	5.196			16.6667		31.2	54 - 118	S10
Surrogate: Tetrachloro-m-xylene	5.227			16.6667		31.4	54 - 118	S10
Matrix Spike (B8K0267-MS1)			Source: 18040	036-02	Prepared	d: 11/7/2018	Analyzed: 11/7/2018	
4,4′-DDD	8.72733	2.0	0.07	16.6667	ND	52.4	73 - 110	M2
4,4'-DDD [2C]	7.81667	2.0	0.07	16.6667	ND	46.9	73 - 110	M2
4,4'-DDE	8.94250	2.0	0.05	16.6667	ND	53.7	71 - 99	M2
4,4'-DDE [2C]	7.32783	2.0	0.05	16.6667	ND	44.0	71 - 99	M2
4,4′-DDT	6.38683	2.0	0.10	16.6667	ND	38.3	51 - 106	M2
4,4'-DDT [2C]	8.45583	2.0	0.10	16.6667	ND	50.7	51 - 106	M2
Aldrin	8.17433	1.0	0.04	16.6667	ND	49.0	67 - 95	M2
Aldrin [2C]	7.08783	1.0	0.04	16.6667	ND	42.5	67 - 95	M2
alpha-BHC	7.81467	1.0	0.11	16.6667	ND	46.9	67 - 94	M2
alpha-BHC [2C]	7.32033	1.0	0.11	16.6667	ND	43.9	67 - 94	M2
alpha-Chlordane	8.60483	1.0	0.12	16.6667	ND	51.6	69 - 99	M2
alpha-Chlordane [2C]	7.28083	1.0	0.12	16.6667	ND	43.7	69 - 99	M2
beta-BHC	8.22200	1.0	0.06	16.6667	ND	49.3	67 - 99	M2
beta-BHC [2C]	7.58450	1.0	0.06	16.6667	ND	45.5	67 - 99	M2
delta-BHC	9.21833	1.0	0.03	16.6667	ND	55.3	73 - 103	M2
delta-BHC [2C]	8.65950	1.0	0.03	16.6667	ND	52.0	73 - 103	M2
Dieldrin	8.56500	2.0	0.13	16.6667	ND	51.4	65 - 93	M2
Dieldrin [2C]	7.34450	2.0	0.13	16.6667	ND	44.1	65 - 93	M2
Endosulfan I	7.88433	1.0	0.10	16.6667	ND	47.3	65 - 91	M2
Endosulfan I [2C]	7.02517	1.0	0.10	16.6667	ND	42.2	65 - 91	M2
Endosulfan II	8.68383	2.0	0.03	16.6667	ND	52.1	65 - 102	M2
Endosulfan II [2C]	8.12517	2.0	0.03	16.6667	ND	48.8	65 - 102	M2

delta-BHC [2C]

Dieldrin

8.95683

8.54717

1.0

2.0

Certificate of Analysis

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0267 - GCSEMI_PC	B/PEST_S (co	ontinued)								
Matrix Spike (B8K0267-MS1) - Co	ntinued	Se	ource: 1804	036-02	Prepare	d: 11/7/2018	Analyzed: 11/7/	2018		
Endosulfan sulfate	8.09883	2.0	0.08	16.6667	ND	48.6	64 - 106			M2
Endosulfan Sulfate [2C]	7.99267	2.0	0.08	16.6667	ND	48.0	64 - 106			M2
Endrin	9.00950	2.0	0.04	16.6667	ND	54.1	64 - 111			M2
Endrin [2C]	8.73517	2.0	0.04	16.6667	ND	52.4	64 - 111			M2
Endrin aldehyde	8.72417	2.0	0.31	16.6667	ND	52.3	64 - 109			M2
Endrin aldehyde [2C]	6.44867	2.0	0.31	16.6667	ND	38.7	64 - 109			M2
Endrin ketone	7.49717	2.0	0.13	16.6667	ND	45.0	57 - 101			M2
Endrin ketone [2C]	7.92833	2.0	0.13	16.6667	ND	47.6	57 - 101			M2
gamma-BHC	7.91117	1.0	0.10	16.6667	ND	47.5	65 - 96			M2
gamma-BHC [2C]	7.55667	1.0	0.10	16.6667	ND	45.3	65 - 96			M2
gamma-Chlordane	8.33667	1.0	0.07	16.6667	ND	50.0	65 - 113			M2
gamma-Chlordane [2C]	7.18567	1.0	0.07	16.6667	ND	43.1	65 - 113			M2
Heptachlor	8.76583	1.0	0.05	16.6667	ND	52.6	61 - 96			M2
Heptachlor [2C]	9.52583	1.0	0.05	16.6667	ND	57.2	61 - 96			M2
Ieptachlor epoxide	8.04350	1.0	0.09	16.6667	ND	48.3	64 - 89			M2
Heptachlor epoxide [2C]	7.32400	1.0	0.09	16.6667	ND	43.9	64 - 89			M2
Methoxychlor	9.50933	5.0	0.18	16.6667	ND	57.1	67 - 109			M2
Methoxychlor [2C]	9.24900	5.0	0.18	16.6667	ND	55.5	67 - 109			M2
Surrogate: Decachlorobiphenyl	7.635			16.6667		45.8	43 - 84			
Surrogate: Decachlorobiphenyl [5.022			16.6667		30.1	43 - 84			S10
Surrogate: Tetrachloro-m-xylene	6.940			16.6667		41.6	54 - 118			S10
Surrogate: Tetrachloro-m-xylene	6.477			16.6667		38.9	54 - 118			S10
Matrix Spike Dup (B8K0267-MSD	1)	Se	ource: 1804	036-02	Prepared: 11/7/2018 Analyzed: 11/7/2018					
	,				•		•		20	Ma
.,4'-DDD	8.64067 7.96567	2.0	0.07	16.6667 16.6667	ND ND	51.8 47.8	73 - 110 73 - 110	0.998 1.89	20 20	M2
I,4′-DDD [2C] I,4′-DDE		2.0	0.07	16.6667	ND ND		73 - 110 71 - 99	0.0578	20	M2 M2
,	8.93733 7.32033	2.0	0.05 0.05	16.6667	ND ND	53.6 43.9	71 - 99 71 - 99	0.0578	20	M2 M2
4,4'-DDE [2C]		2.0					71 - 99 51 - 106			M2
1,4'-DDT	6.37933 8.59050	2.0	0.10	16.6667 16.6667	ND ND	38.3	51 - 106 51 - 106	0.118	20 20	IVI∠
.,4'-DDT [2C]		2.0	0.10	16.6667		51.5		1.58		M2
Aldrin	8.14967	1.0	0.04		ND	48.9	67 - 95	0.302	20	M2
Aldrin [2C]	7.23733	1.0	0.04	16.6667	ND ND	43.4	67 - 95 67 - 94	2.09	20	M2
lpha-BHC	7.81283	1.0	0.11	16.6667	ND ND	46.9		0.0235	20	M2
lpha-BHC [2C]	7.65933	1.0	0.11	16.6667	ND	46.0	67 - 94	4.53	20	M2
llpha-Chlordane	8.54083	1.0	0.12	16.6667	ND	51.2	69 - 99	0.747	20	M2
llpha-Chlordane [2C]	7.28867	1.0	0.12	16.6667	ND	43.7	69 - 99	0.108	20	M2
eta-BHC	8.17733	1.0	0.06	16.6667	ND	49.1	67 - 99	0.545	20	M2
eta-BHC [2C]	7.99417	1.0	0.06	16.6667	ND	48.0	67 - 99	5.26	20	M2
lelta-BHC	9.20967	1.0	0.03	16.6667	ND	55.3	73 - 103	0.0941	20	M2
L DITC [2C]	0.05(03	1.0	0.00	16666		5 2 T	72 102			

73 - 103

65 - 93

3.38

0.208

20

20

M2

M2

16.6667

16.6667

ND

ND

53.7

51.3

0.03

0.13

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Batch B8K0267 - GCSEMI_PCB/PEST_S (continued)

Matrix Spike Dup (B8K0267-MSD	1) - Continued		Source: 1804	036-02	Prepared	1: 11/7/2018	Analyzed: 11/7/	2018		
Dieldrin [2C]	7.40733	2.0	0.13	16.6667	ND	44.4	65 - 93	0.852	20	M2
Endosulfan I	7.89000	1.0	0.10	16.6667	ND	47.3	65 - 91	0.0718	20	M2
Endosulfan I [2C]	6.91200	1.0	0.10	16.6667	ND	41.5	65 - 91	1.62	20	M2
Endosulfan II	8.65750	2.0	0.03	16.6667	ND	51.9	65 - 102	0.304	20	M2
Endosulfan II [2C]	8.26267	2.0	0.03	16.6667	ND	49.6	65 - 102	1.68	20	M2
Endosulfan sulfate	8.08733	2.0	0.08	16.6667	ND	48.5	64 - 106	0.142	20	M2
Endosulfan Sulfate [2C]	8.18900	2.0	0.08	16.6667	ND	49.1	64 - 106	2.43	20	M2
Endrin	8.99100	2.0	0.04	16.6667	ND	53.9	64 - 111	0.206	20	M2
Endrin [2C]	8.89517	2.0	0.04	16.6667	ND	53.4	64 - 111	1.82	20	M2
Endrin aldehyde	8.69300	2.0	0.31	16.6667	ND	52.2	64 - 109	0.358	20	M2
Endrin aldehyde [2C]	6.56417	2.0	0.31	16.6667	ND	39.4	64 - 109	1.78	20	M2
Endrin ketone	7.47467	2.0	0.13	16.6667	ND	44.8	57 - 101	0.301	20	M2
Endrin ketone [2C]	8.03017	2.0	0.13	16.6667	ND	48.2	57 - 101	1.28	20	M2
gamma-BHC	7.90667	1.0	0.10	16.6667	ND	47.4	65 - 96	0.0569	20	M2
gamma-BHC [2C]	7.86050	1.0	0.10	16.6667	ND	47.2	65 - 96	3.94	20	M2
gamma-Chlordane	8.25967	1.0	0.07	16.6667	ND	49.6	65 - 113	0.928	20	M2
gamma-Chlordane [2C]	7.19233	1.0	0.07	16.6667	ND	43.2	65 - 113	0.0927	20	M2
Heptachlor	8.76917	1.0	0.05	16.6667	ND	52.6	61 - 96	0.0380	20	M2
Heptachlor [2C]	10.1040	1.0	0.05	16.6667	ND	60.6	61 - 96	5.89	20	M2
Heptachlor epoxide	7.92700	1.0	0.09	16.6667	ND	47.6	64 - 89	1.46	20	M2
Heptachlor epoxide [2C]	7.40967	1.0	0.09	16.6667	ND	44.5	64 - 89	1.16	20	M2
Methoxychlor	9.51650	5.0	0.18	16.6667	ND	57.1	67 - 109	0.0753	20	M2
Methoxychlor [2C]	9.92483	5.0	0.18	16.6667	ND	59.5	67 - 109	7.05	20	M2
Surrogate: Decachlorobiphenyl	6.883			16.6667		41.3	43 - 84			S10
Surrogate: Decachlorobiphenyl [5.404			16.6667		32.4	43 - 84			S10
Surrogate: Tetrachloro-m-xylene	7.448			16.6667		44.7	54 - 118			S10
Surrogate: Tetrachloro-m-xylene	7.204			16.6667		43.2	54 - 118			S10

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Polychlorinated Biphenyls by EPA 8082 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0014 - GCSEMI_PCI	B/PEST_S									
Blank (B8K0014-BLK2)					Prepared	d: 11/1/2018	Analyzed: 11/1/	2018		
Aroclor 1016	ND	16	4.6							
Aroclor 1221	ND	16	4.6							
Aroclor 1232	ND	16	4.6							
Aroclor 1242	ND	16	4.6							
Aroclor 1248	ND	16	4.6							
Aroclor 1254	ND	16	4.6							
Aroclor 1260	ND	16	4.6							
Aroclor 1262	ND	16	4.6							
Aroclor 1268	ND	16	4.6							
Surrogate: Decachlorobiphenyl	9.502			16.6667		57.0	43 - 84			
Surrogate: Tetrachloro-m-xylene	11.43			16.6667		68.6	54 - 118			
LCS (B8K0014-BS2)					Prepared	d: 11/1/2018	Analyzed: 11/1/	2018		
Aroclor 1016	120.522	16	4.6	166.667		72.3	70 - 92			
Aroclor 1260	135.970	16	4.6	166.667		81.6	62 - 103			
Surrogate: Decachlorobiphenyl	9.636			16.6667		57.8	43 - 84			
Surrogate: Tetrachloro-m-xylene	11.59			16.6667		69.5	54 - 118			
Duplicate (B8K0014-DUP2)		s	ource: 18040	36-82	Prepared	d: 11/1/2018	Analyzed: 11/1/	2018		
Aroclor 1016	ND	16	4.6		ND				20	
Aroclor 1260	ND	16	4.6		ND				20	
Surrogate: Decachlorobiphenyl	8.840			16.6667		53.0	43 - 84			
Surrogate: Tetrachloro-m-xylene	12.93			16.6667		77.6	54 - 118			
Matrix Spike (B8K0014-MS2)		s	ource: 18040	036-63	Prepared	d: 11/1/2018	Analyzed: 11/1/	2018		
Aroclor 1016	151.477	16	4.6	166.667	ND	90.9	70 - 92			
Aroclor 1260	185.228	16	4.6	166.667	ND	111	62 - 103			M2
Surrogate: Decachlorobiphenyl	15.81			16.6667		94.9	43 - 84			S10
Surrogate: Tetrachloro-m-xylene	17.46			16.6667		105	54 - 118			
Matrix Spike Dup (B8K0014-MSD2	2)	S	ource: 18040	36-63	Prepared	d: 11/1/2018	Analyzed: 11/1/	2018		
Aroclor 1016	149.859	16	4.6	166.667	ND	89.9	70 - 92	1.07	20	
Aroclor 1260	181.232	16	4.6	166.667	ND	109	62 - 103	2.18	20	M2
Surrogate: Decachlorobiphenyl	16.09			16.6667		96.6	43 - 84			S10
Surrogate: Tetrachloro-m-xylene	16.94			16.6667		102	54 - 118			

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Polychlorinated Biphenyls by EPA 8082 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0028 - GCSEMI_PC	B/PEST_W									
Blank (B8K0028-BLK2)					Prepare	d: 11/1/2018 A	Analyzed: 11/1/	2018		
Aroclor 1016	ND	0.50	0.04							
Aroclor 1221	ND	1.0	0.04							
Aroclor 1232	ND	0.50	0.04							
Aroclor 1242	ND	0.50	0.04							
Aroclor 1248	ND	0.50	0.04							
Aroclor 1254	ND	0.50	0.04							
Aroclor 1260	ND	0.50	0.04							
Aroclor 1262	ND	0.50	0.04							
Aroclor 1268	ND	0.50	0.04							
Surrogate: Decachlorobiphenyl	0.3350			0.500000		67.0	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.4748			0.500000		95.0	32 - 126			
LCS (B8K0028-BS2)					Prepare	d: 11/1/2018 A	Analyzed: 11/1/	2018		
Aroclor 1016	4.01489	0.50	0.04	5.00000		80.3	72 - 107			
Aroclor 1260	4.70490	0.50	0.04	5.00000		94.1	65 - 124			
Surrogate: Decachlorobiphenyl	0.3939			0.500000		78.8	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.4774			0.500000		95.5	32 - 126			
LCS Dup (B8K0028-BSD2)					Prepare	d: 11/1/2018 A	Analyzed: 11/1/	2018		
Aroclor 1016	4.05726	0.50	0.04	5.00000		81.1	72 - 107	1.05	20	
Aroclor 1260	4.67590	0.50	0.04	5.00000		93.5	65 - 124	0.618	20	
Surrogate: Decachlorobiphenyl	0.3987			0.500000		79.7	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.4732			0.500000		94.6	32 - 126			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/09/2018

Notes and Definitions

S4	Surrogate was diluted out.
S10	Surrogate recovery was outside of laboratory acceptance limit due to possible matrix interference.
R3	RPD value outside acceptance criteria. Calculation is based on raw values. The analytical batch was validated by the Laboratory Control Sample (LCS).
R2	RPD value outside acceptance criteria due to possible matrix interference.
R	RPD value outside acceptance criteria. Calculation is based on raw values.
M2	Matrix spike recovery outside of acceptance limit due to possible matrix interference. The analytical batch was validated by the laboratory control sample.
M1	Matrix spike recovery outside of acceptance limit. The analytical batch was validated by the laboratory control sample.
L4	Laboratory Control Sample outside of control limit but within Marginal Exceedance (ME) limit.
J	Analyte detected below the Practical Quantitation Limit but above or equal to the Method Detection Limit. Result is an estimated concentration.
D1	Sample required dilution due to possible matrix interference.
ND	Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL, analyte is not detected at or above the Method Detection Limit (MDL)
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
NR	Not Reported
RPD	Relative Percent Difference
CA2	CA-ELAP (CDPH)

Notes:

OR1

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
- (3) Results are wet unless otherwise specified.

OR-NELAP (OSPHL)

ADVA

CUSTOMER

3

						(:	1	(į					l			200				200	17000107
>0	OVANCED - TECHNOLOGY	TECHNOLC	ت چ	HAIN OF CUSTODY RECORD		0	<u>></u>	Z Z	S	2		2	ethod of	Method of Transport		-		Sample	Conditi	ous Opo	Sample Conditions Upon Receipt		-
	LABORATORIES	# # \$			Page /	of								V	T	THIE E	Condition		2 \ [Condition Samples to	S # OF SAMPLES MATCH COC 17	<u>*</u> [
327	3275 Walnut Ave., Signal Hill, CA 90755	Hill, CA 90755				1						Ted Great		On Trac	<u></u>	2. HEADSPACE (VOA)	(CE (VOA)				6. PRESERVED		
Tel: (Tel: (562) 989-4045 • Fax: (562) 989-4040	(562) 989-4040										Ö [ο.		1.57	3. CONTAINER INTACT	IER INTAC		DDD		LER TEM	7. COOLER TEMP, deg C:	2. 4. 3. °
				Instruc	Instruction: Complete all shaded areas.	ete all	shade	d arec	īS.			<u></u>	ner:		1	4. SEALED			D L				3.4, 4.
<u>ق</u>	Company:	som Hing			Address:	18771	17781 Cowan											Tel:	949-250-142	50-14	21		
	Leighon Co				City:	Irvine						St	State: CA		Zip:	Zip: 92614		Fax:					
		SEND	SEND REPORT TO:					SEN	SEND INVOICE	DICE TO):			Ö	ame a	same as SEND REPORT	REPO	RT TO	L	EDD		ì	OA/OC
Attn:	Ross Surrency	ey.	Email: rsurrene	Email: rsurency@leightongroup.com	Attn:	Acco	ınts P	Accounts Payable	t)					Email	accipa	acctpayablc@leightongroup.com	sightong	roup.cc		○ Excel	<u> </u>	· 🖸 [Z Routine
ট	Company: Leighton Consulting	nsulting			Company:	Leigh	Leighton Group	roup												○ Equis	sir		☐ Legal
Adc	Address: 17781 Cowan	u			Address:	1778	17781 Cowan	'an				1.52									1		☐ RWQCB
City:	Irvine		State: CA Zip:	92614	City;	Irvine							State:	CA		Zip: 9.	92614						
Pro	Project Name:		Quote #: Special Instr	tructions/Comments	ments:				Reque	Requested Analysis	Analy	Sis			Š	Sample Matrix	Matr	. <u>×</u>	┢	Ş	Container	_	
i.	OSD - COITAX ES		D18J041			(se		-				91				H				H		:40	
Pro 11(Project No.: 11640.008		PO #:			Pesticide						C40) 80							(TAT) £	tni9=4 (19)	: 3=Metal	SZH=E (EC	
Sar	Sampler:	- 3						sis	sis		٨١	ະເວ) ດາ		***************************************	0	Matrix Matrix	√ natew gueous	xintsM r	miT b	iJ=ε ;ΑΟV	= Canister izselq=S (s	Z (HOPN=S HCI) S=HN	
Ν	- Constant	\ \ \ \ \ \ \	Sample Description			Organo Organo	(GRO)	(IsnA :	ylsnA ylsnA	010B	747 YI	ко, ог			704	Solid Water				:Tube; 2:			shis
ITE	(For Lab Use Only)		notice / Clouden	0+00	T.		910	peleci	pele	pee	ercu	Π-H			lic					t :əd			:wa
			sample IU / Location	Date	IIme		08	PS.	∍s	Ðγ	M				08					ΤVE			эВ
1	1804036-01	PER1-0.5		p 33/13	3 0 738	\times	\times	30.5		$\stackrel{\wedge}{\geq}$	\otimes	$\overline{}$							3	5	-	4	
7	70-	PER1-1.5			10339										×				_		-	_	
М	-03	PER1-3.0			161			2							X							_	
4	10- 00	PER2-0.5			10745	\times	\times			$\stackrel{\sim}{\boxtimes}$	\otimes										100 mm 1		
2	-05	PER2-1.5			华的			134; 1453							X								
9	- Ob	Old PER2-3.0			0350										X				************				
7	-07	PER3-0.5			16451	X	×			$\stackrel{\sim}{\geq}$	\otimes	~				Turki Star		4,17	-	*******			
∞	80-	PER3-1.5			0153										7				_				
6	60-	PER3-3.0			10756										X				-			-	
10	→	1-dpg : 01-		<u> </u>	740	\times	\times			$\stackrel{\checkmark}{\boxtimes}$	\boxtimes					2 .5 2			7			\Rightarrow	

SAMPLES

PROJECT

1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday, Salurday 8:00 AM to 12:00 PM.
2. Samples submitted AFTR 3:00 PM are considered received the following business day at 8:00 AM.
3. The following Lunasourd time conditions apply:
TM = 0:300% Surchange SAME BUSINESS DAY if received by 9:00 AM.
TM = 1:300% Surchange SAME BUSINESS DAY (CD8 5:00 PM)
TM = 3:30% Surchange 3:ND BUSINESS DAY (CD8 5:00 PM)
TM = 3:30% Surchange 3:ND BUSINESS DAY (CD8 5:00 PM)
TM = 3:30% Surchange 3:ND BUSINESS DAY (CD8 5:00 PM)
TM = 3:00% Surchange 3:ND BUSINESS DAY (CD8 5:00 PM)
TM = 3:00% SURCHARGE 5:ND BUSINESS DAY (CD8 5:00 PM)
TM = 3:00 SURCHARGE 5:ND BUSINESS DAY (CD8 5:00 PM)

TERMS

ontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective

hpile/week if extended storage is requested. Oby and regenerated reports/EDDs: \$17.50 per hard copy report requested; \$50.00 per samples; \$21/sample/month if extended stonger on rotty-tive (45) calendar days from rec Arr styples; Complimentary storage for ten (10) calendar days from receipt of samples; \$0.9 styple/week if extended stonage for ten (10) calendar days from receipt of samples;

10. Rush TLUP/STLC samples: and 2 days to an analysis XPI for extraction procedure.

11. Unanabyzed samples will incur a disposal fee of 57 per sample.

12. The laboratory will randomly select from all QC samples received the sample to spike for Matrix Spike/Matrix Spike/Watrix Spike Deptice (MSTATS) and no cost. Howevey, If you want the Haboratory a additionally perform MSTATS to Neur sample, a charge will be assessed for the specific sample used.

As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted. Signature Printed Name

Tingeroo

Pats: 1-4/c5

Date:

Received by: (Signature and Printed Name

ved by: (

0/2/2/C

ure and Printed Name) ig ature and Printed Name)

- Marie C Date 29 | Og 29 | Date: Tuished by: (Signature and Phited Name) Relinquished by: (Signature and Printed Name) uished by: (Signature and Printed Nam

YOOTSUD Page 160 of 174

ADVANCED TECHNOLOGY L A B O R A T O R I E S 3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

Sample Conditions Upon Receipt Sample Conditions Upon Receipt N N Conditions N N N Conditions N N N N N N N N N			For Laboratory Use Only	Only		ATLCOC Ver:20180321	80321
Candition L. CHILLED TonTrac 2. HEADSPACE (VOA) 3. CONTAINER INTACT 4. SEALED	Machael	1.0000000000000000000000000000000000000	ldme2	e Conc	lition	is Upon Receipt	
Dontage 1. CHILED 2. H. CHILED 3. CONTAINER INTACT 4. SEALED 4. SEALED	Medioa	oi iransport	Condition	٨	z١	Condition	z >
C OnTrac 2. HEADSPACE (VOA) 3. CONTAINER INTACT 4. SEALED	Cllent	14 0	1. СИЦЦЕВ	Ź		5. # OF SAMPLES MATCH COC	Ø
3. CONTAINER INTACT 4. SEALED	□ Feedty	OnTrac	2. HEADSPACE (VOA)			6. PRESERVED	Z
4. SEALED			3. CONTAINER INTACT	Ø		7. COOLER TEMP, deg C: 🙎 . 🕻	1,2,4
	l comer.		4. SEALED	Ò	Q	3.8,4.0	311

			ي	ţij.	itran 3al	/QCB iel ≷					shen	Кеп											Spike/	کِ جِ	j j
0.2			00/00	Z Routine	∟Caltrans □Legal	□RWQCB □Level IV		<u> </u>	EOZS7WN:	:/ e=N=9 '?													regenerated/reformatted report; \$35 per reprocessed EDD. 10. Rush TCP/STLC samples; add 2 days to analysis TM for extraction procedure. 11. Unawalyzed samples will incur a disposite for \$5 for sample. 12. The laboratory will another yester from all CC samples received the sample to spike for Matrix Spike/ Matrix Spike Deplicate (MS/MSD) at no cost. However, if you want the laboratory to additionally perform MS/MSD on your sample, a charge will be assessed for the specific sample used.	As the authorized agent of the company above, I hereby gurchase laboratory services from all asseburing and horeby missing to another services from all asseburing and horeby missing to another services.	300
2								ler.	(50) 3=H2SO4;	J=HC : S=HN	:evātive:	Prese	4	_								*	sike for atory to ample	se lak	£ 4
3.60				<u>е</u> .	r sin	1		Containe		7 = Canister Rass; Z=Plasgi	6=Tedlar;	(Je(=5		_						400 MARKET PROPERTY OF THE PARKET PROPERTY PROPERTY OF THE PARKET PROPERTY PROPERTY OF THE PARKET PROPERTY PRO			re. le to spe e labor	rchas	ıyı ıle
	50-14		EDD	○ Excel	○EDF ○Equis	0		Ö	thii9=A (191	Z=VOA; 3=Li	: 1=Tube;		5					a construction	· ·	يوننونون		.	ocedur sampl ant the sp. the sp	Ja S	P D
	949-250-142			I				1	(TAT) ∈	miT bn			3			· · · · · · · · · · · · · · · · · · ·			and the Control of th	CAN LEON OF	-	•	EDD. e. ived the fixon with the fixon was seed for the fixon w.	1ereb	5
	Ĭ.	::	TT0					-		xintsM mo	otsuO 16	eju∃				100							regenerated/reformatted report; \$35 per reprocessed EDD TCP/STLC samples; add 2 days to analysis; th' for extraction alyzed samples will intend a disposal fee of 57 per sample, bloopstory will radiomly select from all CC samples received Matrix Spike Duplicate (MS/MSD) at no cost. However, if yo perform MS/MSD on your sample, a charge will be assessed.	(e, 1)	sno *
Te	۳.	Fax	POR	fongre			14	latri		snoənbe-													reproc 5 TAT fo 57 per 57 per 52 sample sst. Ho ge will f	abov	Ω Ū
۵		4	SO RI	@leigt			92614	le N	Natrix	er Matrix Rewater M						Tanga Tanga			(filosofi 1000				35 per analysis lifee of lifee of a all QC at no cc a charg	pany	= 2
4. SEALED		Zip: 92614	as SE	ıyable			Zip:	Sample Matrix		xintsM b													eport; (also to dispose et from (MSD) ample,	Com	ν ς 5
.]		Zip:	same as SEND REPORT	acctpa				Ľ.			701	lios	fruir.	$\overline{\times}$	<u></u>			~					atted r add 2 c ncur a mly sela te (MS)	fthe	<u> </u>
				Email:			CA			<u> </u>	(9)	,		\cap	$\stackrel{\times}{\dashv}$		×	Х		×	X		reform mples: es will i randoi Duplica MSD or	ent o	2
		Įχ		E.			14000												7-x-3				rated/sample sample by will by will by will by will by will be with a MS/f and MS/f	d age	7 0 0
		State: CA					State						_	_									regene alyzed aboratc Matrix perforr	orize m AT	<u>.</u>
		Sta											ar e k Santa P										. The l	auth) -
]								lysis	-C40) 8015				\times			\times			\times					the	י ע אורע
			į					Requested Analysis			09 pine 57 Yup	-	$\stackrel{>}{\Rightarrow}$		1 4 1	$\stackrel{>}{\hookrightarrow}$			$\stackrel{\textstyle imes}{\sim}$				sample t of) 1
								sted	<u> </u>		10109 P		$\widehat{\boxtimes}$			$\widehat{>}$			$\widehat{\times}$				es; air s r receip les; 50.00 p	(2)	2
			SEND INVOICE					dne			snA toe												sampl ys from f samp sted; \$	િકુશ	Time:
sas.			S	<u>e</u>				Re			sot Ana sot Ana						2025 1134						ceipt of te. dar da ceipt o		2
aare			SE	ayat	dno	an					snA tos												rom re- les. port da 5} caler 5} caler from re		- <u>-</u>
ann l	wan			Accounts Payable	n Gi	17781 Cowan					5 (GRC snA toe				Si E								days f f samp ate. rom rej five (4! is reque or days	Daff.	Date:
25 H	<u>ء</u>	ē		uno	ghto	81.0	ne				2 (PCB		$\stackrel{\wedge}{ o}$			$\stackrel{\wedge}{}$			\sim				slendar ceipt o port d r days f r forty r hold i calenda	0.0	۵
lete all shade	Ŝ	Irvine		Acc	Leighton Group	177	Irvine		Pesticides)	ochlorine	l (Organ	1808	\times			\times			\times				after re from re alenda alenda orage fo orage o on (10) o		
instruction: Complete all Shadea areas Address: 1778 Cowan	;	بزا		υ;	Company:	Address:		:S:				Time	805	803	8/0	8 8	830	824	827	838	E89	0	to the subcontract lab ask for quote. 6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples will be disposed of after 14 calendar days after receipt of samples. 7. Electronic records maintained from (6) years from report date. 8. Hard copy reports will be disposed of after 45 calendar days from report date. 9. Stongage and Report Feez. 9. Stongage and Report Feez. 10. Icquid & solid samples. Complimentary stonge for forty-five (45) calendar days from receipt of samples; 52/sample/month if extended stonge or hold is requested. 10. Stongales where it is predicted stonge is requested. 11. Stongard of the profit of the prosts of the copy report requested; 550 samples; 520 samples; 620 samples is reports.	aryte)	- day
ICTION:	?	City:		m Attn:	Š	Adc	City:	mment				•	<u>5</u>	8	~	%	8	8	3	8	81		ab ask fi will be disp after 14 cal disposed for fit disposed ('month if for imentary st exfaded:	Amed Name	Printed
7001				oup.cc				°/Co				Date	五		Albampone A						_>		to the subcontract lab d and solid samples will will be disposed of affunctional copy reports will be disposed an animal copy reports will be disposed and Report Feess: Liquid & solid samples, 52/Sample/m & solid samples (complime \$20 samples/veek Fee Hard copy and regard	e and	re and
7				htong			2614	tion					0										e subco se dispo record report nd Repo d & soli sles; \$2 amples:	ignat	ignatů
F-200					100000	28,783	92	3			1 L					1.50					394	2000	to th will k voll k ronic copy ge ar ge ar Liqui Liqui Samp Air sc \$20 s Hard	1 5	S)
				y@leig			6	1172											900			286	1 5 600	<u> </u>	Ω
				surrency@leig			Z6: diz	al Instr			ption												6. Liqui 7. Elect 8. Hard 9. Stora	eived by	seived b
				all: rsurrency@leightongroup.com				pecial Instr			escription												1	1000	
				Email: rsumency@leig			CA	Special Instructions/Comments:			le Description	non											1	13	
				2000			CA				ample Description	ocation											1	1000	Received by: (Signature and Printed Marke)
				2000					J041 		Sample Description	D / Location											1	13	
	10		T0:	2000			CA)18J041 ;#:		Sample Description	ple ID / Location								The second secon			1	Time:	(CAI 16 1782)
			T0:	2000			CA		_ D18J041 		Sample Description	Sample ID / Location											1	Time:	16 180
			T0:	2000			CA		D18J041 P0#:		Sample Description												1	Time:	(CAI 16 1782)
	9			2000	Sı		CA		D18J041 PO#:		Sample Description		4-0.5	4-1.5	4-3.0	5-0,5	5-1.5	5-3.0	2 -0.5	5-1.5	5-3.0		1	e) Time:	
	ulting		T0:	Email	ulting		CA		D18J041 Po#:				>ER4-0.5	2ER4-1.5	DER4-3.0	PER5-0.5	2ER5-1.5	vER5-3.0	∂ER 6 -0.5	?ER6-1.5	PER6-3.0		1	e) Time:	
	Onsulting		T0:	Email	Sonsulting		CA		D18J041 PO#:	\$00S			十		+	PER5-0.5	5 PER5-1.5	PER5:3.0	PER6-0.5	PER6-1.5	7 PER6-3.0		1	e) Time:	
	on Consulting		T0:	Email	on Consulting		State: CA	Quote #:		\oldots \oldo			=	-12 PER4-1.5	-13 PER4-3.0	—IЧ PER5-0.5	~ [< PER5-1.5			200 200	19 PER6-3.0		1	e) Time:	
	ighton Consulting		T0:	Email	ighton Consulting		State: CA	Quote #:		Bobinsal		Jnly)	=		\dashv		-	(し PER5-3.0	-(7 PER605	-1g PER6-1.5	6]		1	e) Time:	
1 22	Leighton Consulting		T0:	2000	Leighton Consulting	17781 Cowan	CA	Quote #:		5. Beloiwash		Jnly)	=		\dashv		-			200 200	6]		1	e) Time:	
1 2.3			T0:	Ross Surrency	 >	17781 Cowan	State: CA	Quote #:		77		Jnly)	=		\dashv		-			200 200	b1- /		1	e) Time:	C 086 CAI B 1880
Company:			SEND REPORT TO:	Ross Surrency	 >	ess: 17781 Cowan	State: CA			Sampler: J. Boloj wyds/~		(For Lab Use Only)	1804086-11	21-	\dashv		-			200 200	b1- /	10	1. Sample secriving hours: 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. 2. Samples submitted ATER 3:00 FM are considered received the following business day at 8:00 AM. 3. The following turnaround time conditions apply. IVI = 0:300% Surcharge NEXT BUSINESS DAY (I received by 9:00 AM) IVI = 1:100% Surcharge NEXT BUSINESS DAY (COB 5:00 PM) IVI = 3:30% Surcharge NEXT BUSINESS DAY (COB 5:00 PM) IVI = 3:30% Surcharge ATH BUSINESS DAY (COB 5:00 PM) IVI = 3:20% Surcharge ATH BUSINESS DAY (COB 5:00 PM) IVI = 3:00% Surcharge ATH BUSINESS DAY (COB 5:00 PM) IVI =	Name) Date: Time:	(CAI 16 1782)

ADVANCED TECHNOLOGY L A B O R A T O R I E S 3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

۰	
	+
)	of _
)	2
)	age_
	<u>~</u>
)	

	_	_			~	_
21		2		Z	'n	
ATLCOC Ver: 20180321		٨	V	Z	Z 1 7. COOLER TEMP, deg C: 2 - 4,34	33 O. 4.8.8
:201			202		2	,
C Ve		_	S. # OF SAMPLES MATCH COC		leg C:	0.
2	ipt	Condition	LES A	١	MP, c	8
Ā	Sample Conditions Upon Receipt	ŝ	SAME	G G. PRESERVED	ER TE	úζ
	Upon		# OF	PRES	CDOI	
	tions	_] 5.	9] 7.	Z
≥	ondi	Z	7		JΣ][
Ö	ole C	٨		בו	TA	ш
For Laboratory Use Only	Samp	tion		2. HEADSPACE (VOA)	3. CONTAINER INTACT	
r Lab		Condition	Q	PACE	NER	_
Po			1. CHILLED	EADS	ONTA	4. SEALED
			1. C	2. H	3. C	4.5
	Mothod of Tennest	100	ىي ۋ	OnTrac		
	3000	9] ATL	ā		
	150	5			,	
	1		aut	ξ×	0	
	ž		Client	☐ FedEx	8 8	T Officer.
ı			ш	ш		

Instruction: Complete all shaded areas.

L	ပြ	Company:							Address: 17701 C	1922								Tal			1	}
			Leighton Consulting	Consulting					City:	Irvine				Sta	State: CA	diZ	ZIP: 92614	Fax		1741-007-446		
EВ				SE	SEND REPORT TO:							SEND INVOICE TO	CE TO:			Same	same as SEND REPORT TO	REPORT	101	FDD		00/00
MO	Att		Ross Surrency	'ncy		Email:		rsurrency@leightongroup.com	Attn:	Accoun	Accounts Payable	ible			Ē	<u> </u>	acctpayable@leightongroup.com	ghtongroup	E	© Excel	⊃ [2] [Routine
15	රි		Leighton Consulting	Consulting					Company:	Leighta	Leighton Group	d.								○ Equis		□ Caltrans □ Legal
n o	Ad	Address:	17781 Cowan	van					Address:	17781 Cowan	Cowan										יוט	☐ RWQCB
	ō	City:	Irvine			State: CA	Zip: 926	614	City:	Irvine					State: (CA	Zip: 92	92614			Ш	
L	<u>P</u> –	Project Name: I ATISD - Colfax FS	ne: Jolfax FS		Quote #:		ecial Instruc	Special Instructions/Comments	nents:			Reques	Requested Analysi	lysis			Sample Matrix	Matrix		Container	iner	
	 =	Project No.: 11640.008			D18J04J	4				(sabioitsa ^C				C40) 8012					(TAT) £	(Ini9=£ (19	33; 3=H2SO4;	
	Sa	Sampler:	1 Bebie	Sest						(\$	sisyl	aiayl siayl	07	-EL3) 080			t Matrix er Matrix	tewater M -aqueous om Matrix	əmiT bn	Z=VOA; 3=Lit	5; 6=NaOH; 7=HNC 1=HCl; 2=HNC lass; 2=Plastic	
S	M		oratory ID			Sample Description	cription			(PCB	SnA to	snA t snA t	10109 100 Dir 100 VM			779	teW t	noN t	arou	γήτη L=Tube; =Tediar	:9vitsv	shs
b r E	111		(For Lab Use Only)		Sample ID / Location	Location		Date	Time	Z808	Selec	Selec	Arser			11.0S 2H	Selec	Selec	uınŢ	Type: 1	Preser	gеш
MA	Н	180403L	103P- 20	5 PER7-0.5				81/E0101	158				XXX	\times					3	1 5	4	
\$.	7	2	12 -	PER7-1.5				-	0F3							×			-	<u> </u>	-	
ECT	3		22-	2 PER7-3.0					8 市										E	-		
ιo	4		-23	2 PER8-0.5					845		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X	×								
Я 4	2		-24	PER8-1.5					8+6							×			DOMINION			
	9		-22	FER8-3.0					さわる							×						
	7		2_	2je PER9-0.5				41 S (42 s)	823		\sim		X	\times					*****	**************************************		
	∞		t2-	7 PER9-1.5					855							×			o speciel		nanethy,	
	6	<u>→</u>	82	s PER9-3.0				7	851							×			_			
	10	0																				
S W 8 3 L Page		sample receiving Samples submitt The following tur TAT = 0:30 TAT = 2:50 TAT = 3:30 TAT = 4:20 TAT = 5:00 TAT = 5:00	1. Sample receiving hours: 7:30 AM to 7:30 PM Monday 2. Samples submitted AFTER 3:00 PM are considered real following turnound firm conditions apply: Tol = 0.300% Surchange SAME BUSINESS DAY (FIG. 1: 100% Surchange SAME BUSINESS DAY (CT) TAI = 1: 300% Surchange ARD BUSINESS DAY (CT) TAI = 3: 300% Surchange ARD BUSINESS DAY (CT) TAI = 3: 300% Surchange ARD BUSINESS DAY (CT) TAI = 3: 300% Surchange ARD BUSINESS DAY (CT) TAI = 5: NO SURCHARGE SIN SURCHARGE	1. Sample receiving hours; 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. 2. Samples submitted AFTER 3:00 PM are considered received the following business day at 8:00 AM. 3. The following turnacount form continuous apply. TM = 0:300% surcharge SAME BUSINESS DAY if received by 9:00 AM. TM = 1:000% surcharge SAME RISINESS DAY (CDS 5:00 PM) TM = 2:300% surcharge APME BUSINESS DAY (CDS 5:00 PM) TM = 3:300% surcharge APME BUSINESS DAY (CDS 5:00 PM) TM = 3:300% surcharge APME BUSINESS DAY (CDS 5:00 PM) TM = 3:00% surcharge APME BUSINESS DAY (CDS 5:00 PM) TM = 3:00% surcharge APME BUSINESS DAY (CDS 5:00 PM) **A = 5:00 SURCHARGE ST BUSINESS DAY (CDS 5:00 PM) **A = 5:00 SURCHARGE ST BUSINESS DAY (CDS 5:00 PM) **A = 5:00 SURCHARGE ST BUSINESS DAY (CDS 5:00 PM) **A = 5:00 SURCHARGE ST BUSINESS DAY (CDS 5:00 PM) **SURCHARGE ST BUSINESS DAY (CDS 5:00	PM Monday - Friday, Saturday 8:00 AMI to 12:00 PM. onsidered received the following business day at 8:00 AM. sapply: SINESS DAY (CDB 5:00 PM) INESS DAY (CDB 5:00 PM) ESS DAY (C	s day at 8:00 AM.	6. Liqu 7. Elec 8. Har 9. Stol		subcontract lab ask for quote. solid samples will be disposed of after 45 calendar days from receipt of samples; air samples calisposed of after 14 calendar days after except of samples. edisposed of after 14 calendar days after except of samples. reports will be disposed to fave 45 calendar days from report date. After a calendar storage for fourty-five (45) calendar days from receipt of samples. Complimentary storage for forty-five (45) calendar days from receipt of samples; candid samples complimentary storage for hold is requested. males: Complimentary groates for the 100 calendar days from receipt of samples; males complimentary storage is requested.	rr 45 calendi sifter receipt rom report ilendar days rage for fort rage or hold v (10) calenc quested.	ar days from of samples. date. from report from report is requested lar days from and copy rep.	receipt of sampl date. lendar days from i.receipt of sampl ort requested; 55	es; air sample receipt of les; 50.00 per		regenerated/reformatted report; \$35 per reprocessed EDD. 10. Rush TCLP/STIC samples; add 2 days to analysis: MY for extraction procedure. 11. Unawalyzed samples will inter a dispose flee of 5 per sample. 12. The laboratory will analomly select from all CC samples received the sample to spike for Matrix Spike/ Matrix Spike Duplicate (MS/MSD) at no cost. However, if you want the laboratory to additionally perform MS/MSD on your sample, a charge will be assessed for the specific sample used.	Tregenerated/reformatted report, \$35 per reprocessed EDD Tregenerated/reformatted report, \$35 per reprocessed EDD along said 2 days to analysis TAT for extraction alyzed atmosphes will fine that a disposal deep of 57 per sample, becausing ywill randomly select from all CG samples received Matrix Spike Doplicate (MS/MSD) at no cost. However, if yo perform MS/MSD on your sample, a charge will be assessed.	report; \$35 p days to analy a disposal fee disposal fee allect from all allect from all sample, a ch	ver reprocess	sed EDD. Extraction p Imple. received th ver, if you v	rocedure. In sample to want the lab in the specifier.	spike for M oratory to a c sample us	atrix Spike/ dditionally ed.
YOO		indushed by: (Signath	16 00	Punted Name)	Date:	Time:	Received by: (S	Signature and An	nted hame)	(6)	of large	6 July 6	l	the auth	As the authorized agent of the company above, Lhereby purchase laboratory services from ATL as shown above and hereby guarantee nayment as control	ent of the	e compar	ny above	, Lherek	by perch	ase labo	ratory
TSU		inquished by	Relinquished by: (Signature and	E	tolbate:	Time:	Received by: (5 Received by: (5	ignature and Prin	red (e)	_ [Date: /c	/cs Time:	7				1		2	1. A. H. A.	<i>5</i> 2	ב ק
밎)	-							Jace.	THE .		Ы	Printed Name	9			K	Signature	ure	
_																						

ADV

CUSTOMER

		For Laboratory Use Only	Only		ATLCOC Ver;20180321
44.54	Adams in a firm and and	ldmeS	le Cond	tion	Sample Conditions Upon Receipt
Methor	t of Transport	Condition	2 >	2	Condition Y N
Client	Ž	1. CHILLED	Ø	П	Z 🗆 s.# of samples match coc 🏿 🗀
☐ FedEx	On Trac	2. HEADSPACE (VOA)			☐ 6. PRESERVED QQ
89		3. CONTAINER INTACT	ď		D D 7. COOLER TEMP, deg C: 2, 4, 34
		4. SEALED		Z	3,8,40, 165

				(((1					١	For Laboratory Use Only	ory Use	Only		ATLC	DC Ver;	ATLCOC Ver;20180321
>	WANCED (A T	TECHNOLOGY	3	HAIN OF CUSTODY RECORD	F CUS		X R		RD		Method	Method of Transport	oort		Condition	Sample	Sample Conditions Upon Receipt	ns Upon	Receipt		,
	LABORATORIES	~ ::			Page	o to				.L		Ţ		1. CHILLED	9				SAMPLES	5. # OF SAMPLES MATCH COC	- F
32,	3275 Walnut Ave., Signal Hill, CA 90755	III, CA 90755									Feder I	OnTrac	Lac Lac	2. HEAD	2. HEADSPACE (VOA)				RVED		
<u></u>	el: (562) 989-4045 • Fax: (562) 989-4040	562) 989-4040									85] [] []		3. CONT	3. CONTAINER INTACT				ER TEMP	7. COOLER TEMP, deg C: 7	14
				Instructi	Instruction: Complete all shaded areas	ete all st	aded ar	sas.			Other:			4. SEALED	٥				3, 8, 40,	40,	221
ပိ	Company: Teighton Consulting	on ting			ress:	17781 Cowan	wan									Tel:	949-250-1421	50-142	1		
	my nongred	1000			City:	Irvine					State:	CA	diZ	Zip: 92614		Fax:					
1		SEND REPORT TO					SE	SEND INVOICE	OICE TO:				Jsame	as SEN	☐ same as SEND REPORT TO	RT TC	H	EDD		OA	OA/OC
Attil.	Ross Surrency		EMall: rsurrency@te.i	rsurrency@leightongroup.com	Attn:	Accour	Accounts Payable	<u>=</u> [Email:		payable(@	acctpayablc@leightongroup.com	group.cc		O Excel	-73	. <u>P</u> I	Z Routine
Ō	Company: Leighton Consulting	sulting			Company:	Leightc	Leighton Group											○EDF ○Equis	S	ĬŌ	□ Caltrans □ Legal
Adc	Address: 17781 Cowan				Address:	17781 Cowan	Jowan										Ī			55	☐ RWQCB
City:	y: Irvine		State: CA Zip: 92	92614	City:	Irvine					S	State: C	CA	Zip:	92614					o'	1
Prc I	Project Name: I ATISD, Colfev FS	Quote#	te #: Special Instructions/Comments	tions/Comm	nents:			Reque	Requested Analysis	nalysis			-	Samp	Sample Matrix	l ×		Con	Container	\parallel	
ì	YOSU - COIIAX ES		D18J041			(se				SI				_				-		100	
Ртс 11	Project No.: 11640.008	PO#:				Pesticide				-C40) 80							(TAT) 9				***************************************
Sar	Sampler: J. Babilised	-Koon					sisyl	ysis	٤	A17 613) O90		0		xintsM t	tewater h	xintsM mo	miT bn	J=E ;AOV=S esteinsD = V	dzelq≃S (zse	7: e=n9OH) 1=HCl: S=HV	
ME	Laboratory ID		Sample Description			BOA)	SnA to	snA to snA to snA to	1010a 100 oir	[₽] Υ ⟨nu), (ΟЯС		70			ssW t	~~~~					shs
ΉI		Sample	Sample ID / Location	Date	Time	808	Sele	Sele	resq			7	lioS	Selec	Selec			Type:			уeш
⊣	1804031-29	PER10-0.5		10/2418	196	X			X	X		75.25					3	λ.		4	
2	-30	PER10-1.5			806							×							-		
3	-31	PER10-3.0			906							×									
4	-32	PER11-0.5			926	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X	X											
5	-33	PER11-1.5			Sc.							×					_	*********			
9	hE-	PER11-3.0			929							×									
_	-35	PER12-0.5			0935	$\stackrel{\frown}{\times}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X	X					Zab						
∞	-36	PER12-1.5			£860							Α.							no secondoranico		
6	-37	PER12-3.0			8250							×									
10	→	-38 DUD-2		>	0936	$\stackrel{\bigcirc}{\times}$			X	X					3.5 (24) 38.50 (5) 37.50 (6)		-)		\Rightarrow	->	
-																	l		1		

PROJECT

SAMPLES

1. Sample receiving hours, 7:30 AM to 7:30 PM Monday - Friday, Saturday 8:00 AM to 12:00 PM.
2. Samples submitted AFTER 3:00 PM are considered received the following business day at 8:00 AM.
3. The following tunanound finne conditions apply.
TM = 0:300% Surchage AME BUSINESS DAY (FOR 5:00 PM)
TM = 1:500% Surchage BEXT BUSINESS DAY (FOR 5:00 PM)
TM = 3:50% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)
TM = 3:00% Surchage BEX BUSINESS DAY (FOR 5:00 PM)

TERMS

Received by: (Signatu fime: Date:

to the subcontract lab --- ask for quote.

6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples value disposed of after 14 calendar days after receipt of samples.

7. Electronic records manniamed for five [5) years from report date.

8. Hard copy reports will be disposed of after 45 calendar days from report date.

9. Storage and Report fees;

1. Iduid & sould samples; Complimentary storage for forty-five (45) calendar days from receipt of samples; campling any storage for forty-five (45) calendar days from receipt of samples; 22/sample/month ill extended storage or hold is requested.

Air samples; Complimentary storage for the (10) calendar days from receipt of samples; 520 sample/model (and detail storage for the (10) calendar days from receipt of samples; 520 sample/model (and detail storage is requested.

1 Hard copy and regimental details of the part of the contraction of

regenerated/reformatted report; 535 per reprocessed EDD.

10. Rish TCUPSTIC samples: add 2 days to analysis TVI restraction procedure.

11. Unanabyzed samples will incur a disposal fee of 57 per sample.

12. The borstory will andromly select from all QC samples received the sample to sike for Matrix Spike/
The borstory will andromly select from all QC samples received the sample to sike for Matrix Spike/
The borstory will andromly select from all QC samples received the sample to sike for Matrix Spike/
The borstory will andromly select from all QC samples seed for the specific sample used.

Name)

As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted

الكنفيل. Egë Sëë ime:

1 5/45; /(`V 105 fes

Signature

Printed Name

inted Name) Received by: (Signature and Times & Received by: (Signature 04te:1/29/ Relinquished by: (Signature and Printed Name) DAMINA

YOOTSUD Page 163 of 174

ADVANCED ATTECHNOLOGY

3275 Walnut Ave., Signal Hill, CA 90755 TORLES

Tel: (562) 989-4045 ● Fax: (562) 989-4040

CUSTOMER

ATLCOC Ver: 20180321 ð Condition 10 6. PRESERVED For Laboratory Use Only 3. CONTAINER INTACT 2. HEADSPACE (VOA) Condition L. CHILLED 4. SEALED Method of Transport Client FedEx

7. COOLER TEMP, deg C: 7.42.4 ☐RWQCB ☐Level IV ☑ Routine □ Caltrans S. # OF SAMPLES MATCH COC 🔼 QA/QC Remarls □ Legal Container Material: 1=Glass; 2=Plastic; 3=Metal ○ Equis ○ Excel ○ EDF 949-250-142 Ype: 1=Tube; 2=VOA; 3=Liter; 4=Pint; Quantity (TAT) əmiT bnuorenrul acctpayable@leightongroup.com same as SEND REPORT TO Tel: Fax: Enter Custom Matrix Sample Matrix Select Non-aqueous Matrix 92614 Select Wastewater Matrix Zip: 92614 Select Water Matrix Zip: Select Solid Matrix CAEmail 070H X メ × State: State: CA Requested Analysis грн-рво, ово (с13-с40) 8015 Mercury 7471A Arsenic 6020 CHAIN OF CUSTODY RECORD SEND INVOICE 80109 bs9-Select Analysis Select Analysis Instruction: Complete all shaded areas. Accounts Payable Select Analysis Company: Leighton Group 17781 Cowan Address: 17781 Cowan Select Analysis 8015 (GRO) 8082 (PCBs) Irvine Irvine 8081 (Organochlorine Pesticides) 1020 20 450 8% 1013 Time 立の 1024 Address: \tilde{Q} B City: Attn: Special Instructions/Comments: City: 8/1/2/01 rsurrency@leightongroup.com Date Zip: 92614 Sample Description State: CA Sample ID / Location D18104 SEND REPORT TO Quote #: PO #: PER15-0.5 PER15-3.0 PER13-0.5 PER13-1.5 PER13-3.0 PER14-0.5 PER14-1.5 PER14-3.0 PER15-1.5 Leighton Consulting Leighton Consulting Bobines Ross Surrency 17781 Cowan 804036-39 th-9 7 2h-145 141-94 Laboratory ID (For Lab Use Only) LAUSD - Colfax ES Irvine Project Name: Project No.: 11640.008 Company Sampler: Company: Address Attn:

ITEM

SAMPLES

6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples 1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. 2. Samples submitted AFTER 3:00 PM are considered received the following business day at 8:00 AM.

10

9

 ∞

Š 9

PROJECT

LEBMS

e following turnaround time conditions apply.

TAT = 0.200% Surdange SAME DISHESS DAY (Treceived by 9:00 AM
TAT = 1.100% Surdange RATE BUSINESS DAY (COB 5:00 PM)
TAT = 3.50% Surcharge RADE BUSINESS DAY (COB 5:00 PM)
TAT = 3.20% Surcharge RADE BUSINESS DAY (COB 5:00 PM)
TAT = 5.10% Surcharge 4TH BUSINESS DAY (COB 5:00 PM)
TAT = 5.10 SURCHARGE 6TH BUSINESS DAY (COB 5:00 PM)
TAT = 5.10 SURCHARGE 6TH BUSINESS DAY (COB 5:00 PM)

Weekend, holiday, after-hours work --- ask for quote. Sykcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective

9. Storage and Report Fees:

- Utquid & soil beamples: Complimentary storage for forty-five (45) calendar days from receipt of samples; SJSsamplemontary storage or hold is requested.

- Air samples: Complimentary storage for ten (10) calendar days from receipt of samples;

\$20 samples/week if extendeds storage is requested.

- Hard copy and regerally— the display(s) (20) or storage in the copy report requested; \$50.00 per Hard copy reports will be disposed of after 45 calendar days from report date. 7. Electronic records maintained for five (5) years from report date.

will be disposed of after 14 calendar days after receipt of samples.

to the subcontract lab --- ask for quoti

10. RMA TLP/STIC samples and 2 days to analysis MT for extraction procedure.

11. Ubanablzed samples will incur a disposal fee of 57 per sample.

12. The laboratory will randomly select from all QC samples received the sample to spike for Matrix Spike/Matrix Spike Duplicate (MS/MSD) at no cost. However, if you want the laboratory to additionally perform MS/MSD on your sample, a charge will be assessed for the specific sample used.

E STEE 1 Received by: (Signature and Printer Received by: (Signature and F Received by: (Signature and Cagan' Time: 16218 by: (Signature and Hinted-Name) Relinquished by: (Signature and Printed anni Dr ruished by: (Signature

As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted Signature Printed Name

YOOTSUD Page 164 of 174

ADVAL

CUSTOMER

	ľ	The same of the sa				The state of the s
2	o	3.4.0.10	7	ш	4. SEALED	C Omer.
3.4	4	2 🔲 7. COOLER TEMP, deg C: 7.4,3,4	1 0		3. CONTAINER INTACT	88
Ź	₽	☐ 6. PRESERVED		ייו	2. HEADSPACE (VOA)	FedEx OnTrac
	Ø	🗹 🖂 s. # of samples match coc 🂢 🏻	ĴΠ	Z	1. СИІЦЕВ	Client Client
z	٨	Condition	z	_	Condition	Method of Iransport
		Sample Conditions Upon Receipt	onditic	ole C	wes	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
2.1	803	ATLCOC Ver:20180321	۸Į۲	e Oi	For Laboratory Use Only	

V A	VANCED AND TECHNOLOGY	YOU DON'T CH	CHAINO	F CUS	OF CUSTODY RECORD	Method of Transport	in the second se	le Conditio	Sample Conditions Upon Receipt	ceipt	
				0/		4	Condition	z >		Condition	>
	LABORATORI	% 		rage @		Client		Ø	5. # OF SA	5. # OF SAMPLES MATCH COC	н сос 🔟 🗆
327	3275 Walnut Ave., Signal Hill, CA 90755	iill, CA 90755				٧	2. HEADSPACE (VOA)		6. PRESER	ÆD	ďΔ
	el: (562) 989-4045 • Fax: (562) 989-4040	562) 989-4040				8 8	3. CONTAINER INTACT	ПD	7. COOLER	TEMP, deg (D 🗆 12. COOLER TEMP, deg C: 7.46, 3.4
			Instructi	<u>ion</u> : Comple	Instruction: Complete all shaded areas.	C Omer:	- 4. SEALED	口句		3.6	3.8,4.0.10
5	Company:			Address:	17781 Cowan		Tel:	949-2	949-250-1421		
	Leiginon Com			City:	Irvine	State: CA	Zip: 92614 Fax:				
		SEND REPORT TO:			SEND INVOICE TO:		☐ same as SEND REPORT TO	H	EDD	ľ	0A/0C
Attn:	Ross Surrency		rsurrency@leightongroup.com	Attn: ,	Accounts Payable	Email:	acctpayablc@lcightongroup.com		O Excel		Z Routine
Com	Company: Leighton Consulting	sulting		Company:	Leighton Group			Ī	○EDF ○Equis		□ Caltrans □ Legal
Address:	ess: 17781 Cowan			Address:	17781 Cowan			Ī			☐RWQCB
City:	Irvine	State: CA	Zip: 92614	City:	Irvine	State: CA	Zip: 92614	Ī			
Proj	Project Name:	Quote #: Spe	Special Instructions/Comments	nents:	Requested Analysis	alysis	Sample Matrix	-	Container	iner	
ΓV	LAUSD - Colfax ES	D18J041			(se	91			F	-	
Proj 116	Project No.: 11640 008	# Od			esticide	108 (Ot:		(TAT)	jini9=A (1	SZH=£ 'E	
					6 Pd	3-6	X SM Vi Si	әu		ONF	
Sampler	Section S	- 1			lysis lysis lysis lysis lysis Session lysis	12) O80	Thatrix Tha	niT bn	:ε ;ΑΟV=Σ tsinsጋ = ۲ ;	lass; Z=Pla 1=HCl; Z=F lass; Z=Pla	
M	Laboratory ID	Sample Description	ription		(PCB) (GRC) that that that that that (G10)		tsW to ssW to noV to			evitev:	shsi
3TI	(For Lab Use Only)	Sample ID / Location	Date	Time	8082 8015 Selec Selec Selec Selec	-H4T	Selec Selec Selec Selec		iype:	Presei	
1	外・ことと言いる	PER16-0.5	816-6101	10<	X			3	5	-	
2		PER16-1.5	ī –					1-	-	旨	
33	05-	PER16-3.0		1055							
4	15-	PER17-0.5		450	X	×					
5	7.5-	PER17-1.5		5							
9	ES-	PER17-3;0		1011			- X	E			
7	 	PER18-0,5		701	X	X					
8	55-	PER18-1.5		10%			 				
9	J 50	PER18-3.0	\	101			×	->	3	員	
10											

PROJECT SAMPLES

1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM.
2. Samples submitted RFR 3:00 PM are a considered received the following business day at 8:00 AM.
3. The following turnaround me conditions apply.
TAT = 0:300% Surcharge SAME BUSINESS DAY if received by 9:00 AM.
TAT = 1:00% Surcharge SAME BUSINESS DAY (COB 5:00 PM)
TAT = 3:00% Surcharge AND BUSINESS DAY (COB 5:00 PM)
TAT = 3:00% Surcharge AND BUSINESS DAY (COB 5:00 PM)
TAT = 2:00% Surcharge AND BUSINESS DAY (COB 5:00 PM)
TAT = 5:00 SURCHARGE SH BUSINESS DAY (COB 5:00 PM)
TAT = 5:00 SURCHARGE SH BUSINESS DAY (COB 5:00 PM)

TERMS

Weekend, holiday, after-hours work — ask for quote.

to the subcontract lab --- ask for quote.

6. Liquid and samples will be disposed of after 45 calendar days from receipt of samples; air samples will be disposed of after 4 calendar days after receipt of samples.

7. Electronic receiors maintained for five (5) years from report date. 8. Hard copy reports will be disposed of after 45 calendar days from report date.
9. Storage and Report Fees.
- Liquid & solid samples. Complimentary storage for forty-five (45) calendar days from receipt of

requested; \$50.00 per samples; \$2/sample/month if extended storage or hold is requested.

Air samples, complimentary storage for ten (10) calendar days from receipt of samples;
\$20 samples, demended storage is requested.

Hard copy of beginning the profts (EDDs. \$17.50 per hard copy report requested; \$50.0)

10. Real TCU/STIC samples, and 2 days to analysis AT for extraction procedure.

11. Usnana)zed samples will incur a disposal fee of 57 per sample.

12. The laboratory will randomly exlect from all QC samples received the sample to sake for Matrix Spike/Matrix Spike Matrix Spike Depository will randomly exlect from all QC samples received the sample to spike for Matrix Spike/Matrix Spike Matrix Spike Depository and analysis at no cost. However, if you want the laboratory to additionally perform MATRIS for your sample, a charge will be assessed for the specific sample used.

As the authorized agent of the company above, I hereby, purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted

> S D /www.

Date Date <u>E</u> 0

> and Printed Name rinted Name)

CONTRACT OF THE PROPERTY OF TH Printed Name

Signature

Received by: (Signature an Received by: (Signatu Received by: (Sign (M.) 2 1)/ 3 2/E) Date: quished by: (Signature and Printed Name) Relinquished by: (Signature and Printed Name) nquished by: (Signature and Printed Name

YGOTZUO

Page 165 of 174

ADVANCED TECHNOLOGY 1. A B O R A T O R I E S 3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

ATLCOC Ver: 20180321 For Laboratory Use Only 2. HEADSPACE (VDA)
3. CONTAINER INTACT
4. SEALED Condition 1. CHILLED Method of Transport Clent FedEx SSO Other:

Instruction: Complete all shaded areas.

	<u> </u>	Company:							Address	1970-1975					T	1			3
			Leighton Consulting	nsulting					City:	17701 Cowall		St	State:	Zip: 07614		٠Į٠	949-250-142		
d d				SEND	SEND REPORT TO:						SEND INVOICE T	<u>1</u>	5	same as SEND REPORT	ND REPOR	170	נה		20/00
1 1/4 C			Ross Surrency	ý		Email:	rsurrency@leightongroup.com	tongroup.com	Attn:	Accounts Payable			Email:		acctpayable@leightongroup.com	up.com	Excel	- -	QA/QC ☑ Routine
) T S	1	Company: Lei	Leighton Consulting	nsulting					Company: L	Leighton Group	dr						O Equis		□ Caltrans □ Legal
II J		Address: 177	17781 Cowan	u					Address: 1	17781 Cowan							0		☐ RWQCB ☐ Level IV
	์	City: Irvi	Irvine		¥,1	State: CA	Sip: 926	2614		Irvine			State: CA	Y Zip:	92614				
<u> </u>	<u> </u>	Project Name: LATISD - Colfax FS	2. 7. F.S.		Quote #:		Special Instructions/Comments	ions/Comn	nents:		Requested Analysis	Analysis		Sam	Sample Matrix		Con	Container	
	<u> </u>	Project No.: 11640.008	}		D18J041	_				(sesticides)		3108 (040			<u> </u>	(TAT)	Suid=6 (a	3) 3=HZSOd)	C0767W
	Sa	Sampler: 7. Bek	Belonuis) Jysis	lysis lysis lysis B		Q	xinteM t	thatrix Sewater Ma Sepagner I	xinteM mo	Z=VOA; 3=Lite	Z; 6=NaCH; Z=HNO Z; C=Plastic; z=HO; Z=HNO z; 6=NaCH; 7=1	
E 6	<u> </u>	E Laboratory ID	aboratory ID		Š	Sample Description	ription			1 (Organ S2 (PCB 15 (GRC ect Ana ect Ana	ect Ana ect Ana ect Ana 10103 br	enic 603 rcury 74 1-DRO, 0	79}		scVV toe		γtitns :: 1≖Tube; :ebet=a	erial: 1=G ervative:	marls
ıd		_	Ose Osiny)	S	Sample ID / Location	ocation		Date	Time	808 198	Sel Sel	ıθM	1	lioS	Sele		Σλbe	TsM Pres	
MA		1 (8040)	804036-57	PER19-0.5				10/27/13	1110	X X	×	X X X				3	1 5	1 4	
٥.		2	-58	PER19-1.5					1111				×						
ΙJ		3	-59	PER19-3.0					<u>6</u>				×						
ιο		4	-60	PER20-0.5					7	X	×	X							
a d		5	19-	PER20-1.5					<u>t</u>				×						
	9	9	-62	PER20-3.0									د ا						
		7	-63	PER21-0.5					(33	X X X	X	X X X							
	∞	8	100	PER21-1.5					74				X						
	6	, 6	765	PER21-3.0					\ <u>\</u>				×						
	Ī	10	901-	Dup-3				\rightarrow	135	XXX	×	X							
SW		Sample receiving hour Samples submitted AF The following turnaror TAT = 0 : 300% St TAT = 1 : 100% Su	rrs: 7:30 AM to 7:3 FTER 3:00 PM are yund time conditio iurcharge SAME B urcharge NEXT BL	1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. 2. Samples submitted AFTER 3:00 PM are considered received the following business day at 8:00 AM, 3. The following furnaeound fine conditions apply: TiX = 0:300% Surcharge SAME BUSINESS DAY if received by 9:00 AM TXT = 1:100% Surcharge NEXT BUSINESS DAY (COB 5:00 PM)	aturday 8:00 AM to 1 following business da by 9:00 AM	12:00 PM. ay at 8:00 AM.	to the 6. Liquid and s will be 7. Electronic ra 8. Hard copy ry	he subcontract lab d solid samples will le be disposed of after c records maintainec y reports will be disp	ask for quote. I be disposed of after ist 14 calendar days af ed for five (5) years fri	to the subcontract lab sak for quote. 6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples will be disposed of after 14 calendar days after receipt of samples. 7. Electronic records mainlanded for the 67 years from report date. 8. Hand copy reports will be disposed of after 45 calendar days from report date.	receipt of samples; air date.		regenerated/reformatted report; S3S per reprocessed EDD. 10. Rush TCEP/STIC samples; add. 2 days to analysis TAT for extraction procedure. 11. Unanalyzed samples will incur a disposal fee of S7 per sample. 12. The aboratory will randomly select from all CG samples received the sample to spike for Matrix Spike/Matrix Spike Duplicate (MS/MSS) at no cost. However, If you want the laboratory to additionally.	ormatted report; es; add 2 days to vill incur a dispos domly select fro licate (MS/MSD]	\$35 per reprocion analysis TAT for all fee of \$7 per remple malf QC sample at no cost. How	essed EDD. r extraction sample. es received	n procedure the sample u want the	to spike for aboratory to	Matrix Spike/ a additionally
Nage Page		TAT = 2 : 50% Sur TAT = 3 : 30% Sur TAT = 4 : 20% Sur TAT = 5 : NO SUR Weekend, holiday, afte	urcharge 2ND BUS richarge 3RD BUS richarge 4TH BUSI RCHARGE 5th BUS er-hours work —: - 15 business days	NTA = 2:36% Survitage 2 ND BUSINESS DAY (COB 5:00 PM) TAT = 5:30% Survitage 3 RD BUSINESS DAY (COB 5:00 PM) TAT = 4:20% Surcharge 4TH BUSINESS DAY (COB 5:00 PM) TAT = 5:10 SURCHARGE 5 TH BUSINESS DAY (COB 5:00 PM) 4. Weekend, bridday, after-hours work — ask for quior 8. 5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surrcharge respective) I) ter TATs will incur a su	urcharge respective	9. Sto	nd Report Fees: id & solid samples: C ples; \$2/sample/mo amples: Complimen sample/veek if exte	Fees: amples: Complimentary storage for for imple/month if extended storage or hol momplimentary storage for ten (10) calen tek if extended storage is requested. **Regenerated reports/EDDs: \$17.50 per	age and Report Fees: - Liquid & Solds angles: Complimentary storage for forty-five (45) calendar days from receipt of samples; Stamples/month if extended storage or hold is requested. - Air samples; Complimentary storage for ten (10) calendar days from receipt of samples; 200 samples, and fixed is catended storage is requested. - Supples/Meek (actended storage is requested. - Hand copy generated reports/DDs; 517.50 per land copy report requested; 550.00 per	calendar days from receipt of sted. om receipt of samples; report requested; \$50.00 per	ipt of per	perform MS/MSI) on your sampk	, a charge will b	oe assessed	for the spe	cific sample	nsed.
166 0		Relinging by: (Signature and Printed Name) Relinging by: (Signature and Printed Name)	ignature and Pringle On Mark	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date: // all 1	Time: Re	Received by: (Sign		nd Princed Name) nd Princed Name)	10 Pate (1)	(SEG)		As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted	t of the con	npany abov and hereby	/e, I hên y guarar	eby pure	hase lak ment as	oratory quoted.
		Relinquished by: (Signature and Printed Name)	U Ignature and Prir	-	⊸ ।		Received by: (Sig	Signature and Printed Name	ted Name)	10 /24 / Date:	/rÇ /PV>		Printed Name	إر		7	Sign Control	Ginnatura	
<u> </u> 4]																25	2	

ADVANCED A TECHNOLOGY

L A B O R A T O R L E S 3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD

ATLCOC Ver: 20180321 For Laboratory Use Only 2. HEADSPACE (VOA)
3. CONTAINER INTACT Condition 1. CHILLED Client FedEx SSO Other:

ADVANCED TECHNOLOGY LABORATORIES

Tel: (562) 989-4045 • Fax: (562) 989-4040

CHAIN OF CUSTODY RECORD 3275 Walnut Ave., Signal Hill, CA 90755

	For Laboratory Use Only	Only	ATLCOC Ver:20180321	1803	2.1
i de la companya de l	Sampl	e Condii	Sample Conditions Upon Receipt		
Metriod of Iransport	Condition	Z Y	Condition	È	z
Client ATL	1. CHILLED	Z	🛭 🖂 s. # of samples match coc 🗗 🗀	Ä	
×	2. HEADSPACE (VOA)		G G. PRESERVED	Ż	ZZ
080	3. CONTAINER INTACT	Δľ	7 0 7. COOLER TEMP, deg C: 2.4,3.4	4,3,	-
Omer:	4.SEALED		3.8,4.0 16	2	13
					ı

- 1			A CONTRACTOR OF THE CONTRACTOR	INSTRUCT	ion: comple	instruction: complete all shaded areas	reas.			4. SEALED	QS	Ĭ		11 Š	38,40 10
	S	Company:			Address:	17781 Cowan					<u>a</u>	100	949-250-1421		
1		Leiginon Consuming	Milling		City:	Irvine		S	State: CA	Zip: 92614	4 Fax:				
EВ			SEND REPORT TO:				SEND INVOICE TO			Same as SEND REPORT TO	VD REPORT	10	FDD		04/00
IN C	Attn:	Ross Surrency	Email: rsurency@lei y	@leightongroup.com	Attn:	Accounts Payable	able		Email:		acctpayable@leightongroup.com	moor.	O Excel		Routine
) I S I	Comp	Company: Leighton Consulting	gunlusc		Company:	Leighton Group	dr						○EDF ○Equis		∟Caltrans □Legal
n o	Address	ess: 17781 Cowan	1		Address:	17781 Cowan							0	1	☐ RWQCB
	City:	Irvine	State: CA Zip	Zip: 92614	City.	Irvine			State: CA	√ Zip:	92614				
П	Proje I A I	Project Name:		Special Instructions/Comments	nents:		Requeste	Requested Analysis		Samp	Sample Matrix		Container	iner	
	Proje 1164	Project No.: 11640.008	D18J041 Po#:			(səpiqiqes)		C40) 8015			Matrix		Quid=⊅ (uə	(\$0\$ZH=£ (£0	EO7C7YN
	Sampler	S. Bal	1500			() Sisis	lysis lysis lysis			xhtsM t	er Matrix tewater M sucous subatrix	emiT bn	Z=VOA; 3=Lit	J=HCI; Z=HNe	-/ (HOPN=9 17
S	M:	Laboratory ID	Sample Description			ngaro) (PCB (GRC sna tr snA tr	snA t snA t snA t	.00 oir ₽7 yru 0,090			ssW t			:9vitsv	
bΓΕ	3T1	(For Lab Use Only)	Sample ID / Location	Date	Time	8082 8012	Selec Selec	Merc			Selec		Type:	Preser	Rem
ΜÞ	П	1804036-76	PER25-0.5	SKEG01	123	X X X	×	X X X				3	5	1 4	
S.	2	1	PER25-1.5	1	9E E1					×					
E C 1	Э	-78	PER25-3.0		1338					×					
ſΟ	4	120	PER26-0.5		17.04	×	X	X X X							
ЬВ	2	08-	PER26-1.5		から					∀					
	9	18-	PER26-3.0		1243					×			. Company		
	7	28	PER27-0.5		1246	X X X	X	X X X					Co-security		
	8	-83	PER27-1.5		ナガ					マ					
	6	hs- 1	PER27-3.0	>	1248					X			3		
- 1	10	(
SMS	1. Samp 2. Samp 3. The fi	1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday, Satu. 2. Sample s submitted ATTR 3. 104 M are considered received the foil 3. The Enjalowing Iumano AMT B M are conditions apply. TMT = 0:300% Surchange SAME BUSINESS DAY (Freedived by TMT = 1:300% Surchange SAME BUSINESS DAY (Freedived by TMT = 1:30% Surchange 2ND BUSINESS DAY (COS 5:00 PM) TMT = 2:50% Surchange 2ND BUSINESS DAY (COS 5:00 PM)	riday - Friday, Saturday 8:00 AM to 12:00 PM. d received the following business day at 8:00 AM. DAY if received by 9:00 AM AY (COS ESOP PM)	to the subcontract lab ask for quote. 6. Liquid and samples will be disposed of after 45 calendar days from receipt of samples; air samples will be disposed of after days after receipt of samples. 7. Electronic records maintained for five [5] years from report date. 8. Hadd copy reports will be disposed of after 45 calendar days from report date. 9. Stonges and Record Fees:	ask for quote. 1 be disposed of after 14 calendar days and for five (5) years fiposed of after 45 ca	ine subcontroat lab ask for quote. d solid samples will be disposed of after 45 calendar days from the disposed of after 14 calendar days after erecipt of samples, records maintained for five [3] years from report date. Ty reports will be disposed of after 45 calendar days from report nd Record Fees.	n receipt of samples; a t date.	1	regenerated/reformatted report; \$35 per reprocessed EDD. 10. Rush TCIP/STIC samples; add 2 days to analysis TAT for extraction procedure. 11. Unanalyzed samples will incur a disposal fee of 57 per sample. 12. The laboratory will incurb my leaved the of 57 per sample. 13. The laboratory will incurb eld/STOS and all CC samples received the sample to spike for Matrix Spike/ Matrix Spike Duplicite (MS/MSD) at no cost. However, if you want the laboratory to additionally perform MS/MSD on your sample, a charge will be assessed for the specific sample used.	regenerated/reformatted report; \$35 per reprocessed EDD TCIP/STIC samples; and 2 days to analysis TM for extractio alyzed samples will mear a disposal fee of 57 per sample Martix Spike Doplined (MS/MSIS) at no cost. However, if y perform MS/MSIO on your sample, a charge will be assessed	\$35 per reprocess analysis TAT for e. al fee of \$7 per sa n all QC samples of the cost. Howe at no cost. Howe a charge will be a	sed EDD. xtraction p mple. received th ver, if you assessed fe	rrocedure. ne sample t want the la	o spike for boratory t	Matrix Spike/ o additionally used.

6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples will be disposed of after 1 d safendar days after receipt of samples.

7. Electronic records maintained for the (5) years from report date. 2. Sample schoring potents. The considered received the following business day at 8:00 AM.
3. The following turnsoround more conditions apply.
3. The following turnsoround more conditions apply.

TAT = 0: 300% surcharge SAMF BUSINESS DAY (COB 5:00 PM)

TAT = 1: 100% surcharge NEXT BUSINESS DAY (COB 5:00 PM)

TAT = 3: 30% surcharge ADB BUSINESS DAY (COB 5:00 PM)

TAT = 4: 20% surcharge ATH BUSINESS DAY (COB 5:00 PM)

TAT = 4: 20% surcharge ATH BUSINESS DAY (COB 5:00 PM)

TAT = 5: NO SURCHARGE 5: BUSINESS DAY (COB 5:00 PM)

TAT = 5: NO SURCHARGE 5: BUSINESS DAY (COB 5:00 PM)

4. Weekend, holiday, alter-hours work.—as for quote.
5. Supcontact TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective

TERMS

Time: Date Inted Name ned by: (Signafure and Punted f

B. Hard copy reports will be disposed of after 45 calendar days from report date.

9. Storage and Report Fees:

- Liquid & sould sample: Complimentary storage for forty-five (45) calendar days from receipt of samples; \$2/sample/month if extended storage or hold is requested.

- Air samples: 22/sample/month if extended storage or hold is requested.

- Air samples: Complimentary storage for reut (10) calendar days from receipt of samples; 520 sample/exected (explosed storage is requested.

- Hard copy and regety/4 and reports/EDDs: \$17.50 per haird copy report requested; \$50.00 per

As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted.

Signature

Printed Name ime: (ÇV 5/5/0 \overline{z}

Received by: (Signature and

Date: 124

Relinquished by: (Signature and Printed Name

Received by: (Signature a Received by: (Signati

CUSTODY Page 168 of 174

Relinquished by: (Signature and Phi

CUSTOMER

		For Laboratory Use Only	Only		ATLCOC Ver: 20180321	321
74.84		dures	le Cond	ition	Sample Conditions Upon Receipt	
Memor	Method of Transport	Condition	٨	z	Condition	z
Client	TANTI.	1. CHILLED	Þ		B 🖂 🗆 s. # of samples match coc 💋 🛙	j 🗆
- FedEx	OnTrac	2. HEADSPACE (VOA)			☐ ☐ 6. PRESERVED	Z
S		3. CONTAINER INTACT	Z		Z 🗆 7. COOLER TEMP, deg C: 7,4,3,4	3.4
Outlett	-	4. SEALED		Z	24,4.0 1LE	14

				-					101	11 030 0111		TECOS AS	12000102
VANCED		TECHNOLOGY	CHAINO	1 CO2 I	OF CUSIODY RECORD	OKD,	Method of Transport	Transport	Condition	Sample Conc	Sample Conditions Upon Receipt Y N Condit	Condition	>
1 8 1	ABORATORIE	8 = 3		Page 10 of	 		1		1. CHILLED	Ø	S. # OF SAN	5. # OF SAMPLES MATCH COC	
1275 Waln	275 Walnut Ave., Signal Hill, CA 90755	Hill, CA 90755			•		FedEx	OnTrac	2. HEADSPACE (VOA)			Q.	Z Z
1. (202) 36	00-4040 • Fax.	0404-606 (205)	Instructi	ion: Complete	<u>Instruction</u> : Complete all shaded areas		Other:		4. SEALED			Z A, H.O	7. COOLER TEMP, deg C: 7.4, 3.4
ompany:	i			Address: 17	17781 Cowan					Tel: 949	949-250-1421		
	Leignion Consuming			City: Irv	Irvine		State: CA		Zip: 92614	Fax:			
***		SEND REPORT TO:			SEND	SEND INVOICE TO:		Same	same as SEND REPORT	RT TO	600	0	QA/QC
(CUI).	Ross Surrency	EMail	rsurrency@leightongroup.com		Accounts Payable			Email: accl	acctpayablc@leightongroup.com	group.com	O Excel	Ŋ C	Z Routine
Company:	Leighton Consulting	sulting			Leighton Group						C Equis] [] [Calidans Clegal
Address:	17781 Cowan			Address: 17	17781 Cowan						0		☐ RWQCB ☐ Level IV
ity:	Irvine	State: CA	Zip: 92614	City: Irv	Irvine		State:	e: CA	Zip: 92614				
roject Name:	roject Name: ATISD ଦରାର ଅଟ		Special Instructions/Comments	nents:	8	Requested Analysis	alysis		Sample Matrix	,i,	Container	ner	
Project No.	COMEN TO	D18J041 P0#:		esticides)			S108 (0+C				ifiniq=⊅ (as	: BOSZH=E	
sampler:	Robina,			ochlorine F	s) Veis Veis	ysis 3 00) BEO (C13-	۹٦	I Matrix sr Matrix tewater M squeous	xintsM me	S=VOA; 3=Lit Σ= Canister	Selestic T=HCl) S=HNC Ses: S=Blestic	
	l aboratory ID	Sample Description	iption	negrO	PCB: (GRO) (GROsl (Ansl	lsnA 1 lsnA 1 301 08 303 51	11y 74 0,090	οΗ	t Wate	Custo	γ ታίτη edut=. qelbaT≈	:элцел	srls
3기 	(For Lab Use Only)	Sample ID / Location	Date	Time Time	8082 Selec Selec	Selec Lead Arsen		lioS	Seleci Seleci	1⊖JnΞ	ιλbe: τ	resen	wəy
1 80	1804036-85	PER28-0.5	16/24/8	X 2521		X				-	1 5	10000	
2	98-	PER28-1.5		1253				×			,	7	
3	18-	PER28-3.0		1354				×			and the same of th		
4	- 88	PER29-0.5		× 6501	×	X	X					· Chamore	
5	180	PER29-1.5		1259				×		2.53		3/2	
9	06- >	PER29-3.0		1300				×					
7										\) }		
∞													
6													
10													
. Sample receivii . Samples submi	ng hours: 7:30 AM to 7:3 itted AFTER 3:00 PM are o	Sample receiving hours; 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. Samples submitted AFTR 3:00 PM are considered received the following business day at 80.90 AM.	to the subcontract lab ask for quote. 6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples	ask for quote. I be disposed of after 45	calendar days from receipt	t of samples; air samp	11	rated/reformattec	regenerated/reformatted report; \$35 per reprocessed EDD TCLP/STLC samples; add 2 days to analysis TAT for extractio	ocessed EDD. for extraction	n procedure.		
TAT = 0 :: TAT = 0 ::	The following turnaround time conditions apply: TAT = 0 : 300% Surcharge SAME BUSINESS TAT RIGHESS	ollowing turnaround time conditions apply: The 1900's Surchage SAME BURKISS DAY freeiwed by 9:00 AM Tht = 1 -1 nine, curchage shift Bulkinsch DAY free can bus	will be disposed of after 14 calendar days after receipt of samples. 7. Electronic records maintained for (E) years from report date.	d for five (5) years from	receipt of samples. report date.			samples will incur ry will randomly s	 Uhanalyzed samples will incur a disposal fee of 57 per sample. The Blooratory will randomly select from all QC samples received frample to spike for Matrix Spike/ Matrix chief minician low select from all QC samples received from want the blooratory to additionally Matrix chief minician low. 	per sample. Toples received	I the sample to	spike for Ma	itríx Spike/
TAT = 2 :: TAT = 3 ::	TAT = 2 : 50% Surcharge 2ND BUSINESS DAY (COB 5:00 PM) TAT = 3 : 30% Surcharge 3RD BUSINESS DAY (COB 5:00 PM)	STATES DAY (COB 5:00 PM)	Storage and Report Fees: Liquid & solid samples:	posed of after 45 carent Complimentary storage	copy report swill versite usposed of after 45 calendar days from report date. ge and Report Fees: utuld & solid sameles: Complimentary storage for forty-five (45) calendar davs from receipt of	davs from receipt of	perform	MS/MSD on you	r sample, a charge w	ill be assessed	for the specifi	sample use	d,
TAT = 4 : TAT = 5 : 1 Weekend, holic	TAT = 4 : 20% Surcharge 4TH BUSINESS DAY (CO TAT = 5 : NO SURCHARGE 5th BUSINESS DAY (C Weekend, holiday, after-hours work ask for quote.	TAT = 4 : 20% Surcharge 4TH BUSINESS DAY (COB 5:00 PM) TAT = 5 : 100 SURCHARGE 5: th BUSINESS DAY (COB 5:00 PM) end, Johldy After-hours work — ask for quote.	samples; \$2/sample/mc Air samples: Complimes \$20 sample/week il ext	onth if extended storagi ntary storage for ten (10 ended storage is reques	samples; \$2/sample/month if extended storage or hold is requested Ar samples: Complifications are true (10) extended storage or hold is requested As sample, Scomplifications storage for the (110) entired days from receipt of samples;	ot of samples;							
. Subcontract TA	VT is 10 - 15 business days	quiring shorter TATs will incur a surcharge respect	· Hard copy and regens	sted reports/EDDs: \$17	rated reports/EDDs: \$17.50 per hard copy report requested; \$50.00 per	luested; \$50.00 per							
elingwished t	Inquished by: (Signature and Printed Name)	Name) Date: Time:	Received by: (Signature a devir	nted Name)	(1/62/20)		As the authorized agent of the company above, I hereby purchase laboratory	d agent of th	ie company ab	ove, I her	eby purch	se labo	ratory
elinauišhed I	elinquīšhed by: (Signature and Printed	1985 (0) 289 (13 (4126)	-E /*~	(ed Name)	Date, (15	Timp	services from Art, as snown above and nereby guarantee payment as quoted.	as snown a	bove and nere	oy guarar (ntee paym	ent as qu	Joted
elinquished .	elinquished by: (Signature and Printed	Name) Date: Time:	Received by: (Signature and Prin	nted Name)	Date:	Time:	Printed Name	Name	4		Signature	ure	1

PROJECT SAMPLES

TERMS

YOOTSUD Page 169 of 174

ADV

CUSTOMER

					For Laboratory Use Only		ATLCOC Ver:20180321
DVANCED	TECHNOLOGY	CHAINO	IF CUSTODY RECOR	Method of Transport		no Chon	
) :) :			Page 1 of 1		Condition	N Condition	Condition Y N
	al Hill. CA 90755					G PRESERVED	
727.3 Walliat AVE;, Jigilal IIIII, CA 307.33 Tel·(562) 989-4045 ● Eav: (562) 989-4040	c (562) 989-4040				3. CONTAINER INTACT	7 COOLER TEMP	7 COOLER TEMP dear C 2 th 2 th
(20c) (20c) (30c)	. (1017)	Instructi	Instruction: Complete all shaded areas.	Other:		3.8	12.0.12
Company:			Address: 17781 Cowan		Tel: 949.	0-1421	
Leighton Consulting	onsulting		City: Irvine	State: CA	Zip: 92614 Fax:		
	SEND REPORT TO:		SEND INVOICE TO			ED0	QA/QC
Attn: Ross Surrency	Email:	: rsurrency@leightongroup.com	Attn: Accounts Payable	E	Email: acctpayable@leightongroup.com	C Excel	Routine
Company: Leighton Consulting	onsulting		Company: Leighton Group			Ceduls	☐ Legal
Address: 17781 Cowan	an		Address: 17781 Cowan				☐ Level IV
City: Irvine	. State: CA	Zip: 92614	Glty: Irvine	State: C	CA ZIP: 92614		
Project Name:	Quote #; Sp	Special Instructions/Comments		Requested Analysis	Sample Matrix	Container	-
Project No.:	D18J041		(səpiə);	3108 (0	xirti	lst9M=	
11640.008	PO #:		sed €	3-C+0	Matr s Ms	£ ;5#5	
Sampler: A Colono as	7		oleyis siayl siayl siayl siayl	07	xintsM to tritsM neater toeupe- tritsM mo	=S ;AOV=S : 7 = Canista lass; 2=Plas	5: 6=NaOH; 1≈HCl; 2≈H
_	Sample Description	scription	(GFC) (GRC)	00108 ury 74 000, 090	t Wat seW t don toVor	ə=t :l e i	
(For Lab Use Only)	Sample ID / Location	Date	26160 26160 26160 26160 8042	Arser System	Selec Selec Selec Enter	Tγpe: 5≅Jar; Mater	d =4C;
1 1804036-91	- 8구	MES OF	980 XXX	\(\frac{\chi}{\chi} \) \(\times \) \(\t	3	1. 9	4
2							
3							
4							
5							
9							
8							
6							
10							
1. Sample receiving hours: 7:30 AM to 2. Samples submitted AFTER 3:00 PM 8	1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday Saturday 8:00 AM to 12:00 PM. 2. Samples submitted AFTER 3:00 PM are considered received the following business day at 8:00 AM.	to the subcontract lab ask for quote 6. Liquid and solid samples will be disposed of	the subcontract lab sak for quote. and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples		regenerated/reformatted report; \$35 per reprocessed EDD. TCLP/STLC samples: add 2 days to analysis TAT for extraction	n procedure.	
3. The following furnaround time cond TAT ≈ 0:300% Surcharge SAM	litons apply: IE BUSINESS DAY if received by 9:00 AM	will be disposed of after 7. Electronic records maintainer	r 14 calendar days after receipt of samples. cd for five (5) years from report date.	11. Unanalyzed samples 12. The laboratory will r	will incur a disposal tee of 57 per sample. andomly select from all QC samples received i	the sample to spike	for Matrix Spike/
TAT = 1:100% Surcharge NEXT BUSINESS DAY (COB 5:00 PM) TAT = 2:50% Surcharge 2ND BUSINESS DAY (COB 5:00 PM)	F BUSINESS DAY (COB 5:00 PM) LUSINESS DAY (COB 5:00 PM)	 Hard copy reports will be dist Storage and Report Fees: 	B. Hard copy reports will be disposed of after 45 calendar days from report date. 9. Storage and Report Fees:		Matit's bike Duplicate [MS/MSD) at no cost. However, if you want the laboratory to additionally perform MS/MSD on your sample, a charge will be assessed for the specific sample used.	u want the laborator for the specific sam	y to additionally ple used.
TAT = 3: 30KS surcharge ARD BUSINESS DAY (COB 5:00 PM) TAT = 4: 20KS surcharge 4TH BUSINESS DAY (COB 5:00 PM) TAT = 5: ND SURCHARGE SIN BUSINESS DAY (COB 5:00 PM) TAT = 5: ND SURCHARGE SIN BUSINESS DAY (COB 5:00 PM) 4. Weekend, brildast after-hours work ask for quote.	TAT = 3:30% Surcharge 3RD BUSINESS DAY (COB 5:00 PM) TAT = 4:20% SURCHARGE 4TH BUSINESS DAY (COB 5:00 PM) TAT = 5:100 SURCHARGE 5 RB BUSINESS DAY (COB 5:00 PM) TAT = 5:100 SURCHARGE 5 RB BUSINESS DAY (COB 5:00 PM) Weekend, holiday, after-hours work — ask for quote.		- Liquid & soils amples; Complimentary storage for forty-five (45) salendar days from receipt of samples; \$2/5 sample/month it settended storage or hold is requested. Ant samples; Confiltunentary storage for ten (10) calendar days from receipt of samples; \$20 sample welf, if betended storage is requested.	receipt of 85;		į.	
Relinfugished by: (Signature and	frintedName) Date:	CPIVPO DV. (Signa	tile stid Binker Name Bate at Bate at Ime			and the state of t	
	100 Sev	7	101 (162) (CA)		As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted.	eby purchase I	aboratory as guoted
Kelliquistied by. (algraphic and	16/29/13	Received by: (signature and Printed Name)	10 Asyl RV	Т			r I
Relinquished by: (Signature and Ar	(krinted Name) Date: Time:	Received by: (Sighatúre and/Printed Name)	nted Name) Date: Time:	Printe	\	Signature	

PROJECT SAMPLES

SW831 ROOISNO
Page 170 of 174

From:

Ross Surrency <rsurrency@leightongroup.com>

Sent:

Friday, November 02, 2018 10:43 AM

To:

Dominic Mata

Cc:

Robert Lovdahl; Carmen Aguila; customer.relations@atlglobal.com

Subject:

RE: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Two-day.

Ross

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Friday, November 02, 2018 10:41 AM

To: Ross Surrency

Cc: Robert Lovdahl; Carmen Aguila; <u>customer.relations@atlglobal.com</u> **Subject:** RE: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Hi Ross,

What TAT would you like for the below arsenic analysis?

Thanks, Dominic

From: Ross Surrency [mailto:rsurrency@leightongroup.com]

Sent: Friday, November 02, 2018 8:00 AM

To: Dominic Mata

Cc: Robert Lovdahl; customer.relations@atlglobal.com

Subject: RE: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Dominic,

Please run the following samples for arsenic:

PER12-1.5

PER14-1.5

Thanks,

Ross Surrency, PG Associate Geologist

Leighton Consulting, Inc 17781 Cowan, Irvine, CA 92614

(949) 681-4264 - Direct

(949) 880-4439 - Cell

Geotechnical | Geoenvironmental | Materials Testing

SOLUTIONS YOU CAN BUILD ON

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Thursday, November 01, 2018 6:00 PM

From:

Ross Surrency <rsurrency@leightongroup.com>

Sent:

Friday, November 02, 2018 11:10 AM

To:

Dominic Mata

Cc:

Robert Lovdahl; customer.relations@atlglobal.com

Subject:

RE: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Dominic,

Please analyze the following sample for TPH-DRO/ORO on a 2-day TAT:

PER22-1.5.

Thanks,

Ross Surrency, PG Associate Geologist Leighton Consulting, Inc 17781 Cowan, Irvine, CA 92614 (949) 681-4264 - Direct (949) 880-4439 - Cell

Geotechnical | Geoenvironmental | Materials Testing

SOLUTIONS YOU CAN BUILD ON

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Thursday, November 01, 2018 6:00 PM

To: Ross Surrency

Cc: Robert Lovdahl; customer.relations@atlglobal.com

Subject: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Good afternoon Ross.

Please find partial results for the above project attached. Final report is pending 8081 & 8082 analyses that will be completed tomorrow (11/2). If I can further assist, please let me know.

Thanks,

Dominic Mata | Project Coordinator ADVANCED TECHNOLOGY LABORATORIES 3275 Walnut Avenue, Signal Hill CA 90755 O: 562.989.4045 ext. 238 | http://www.atlglobal.com

Cabaratory Excellence Defined

This message is intended for the use of the individual or entity to which it is addressed. This may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you

have received this communication in error, please notify us immediately by telephone and delete the original message. Thank you.

Page 172 of 174

From:

Ross Surrency <r surrency@leightongroup.com>

Sent:

Friday, November 02, 2018 1:26 PM

To:

Dominic Mata

Cc:

Robert Lovdahl; customer.relations@atlglobal.com

Subject:

RE: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Dominic,

Please run STLC for lead on the following samples on a standard TAT:

PER15-0.5 PER24-0.5

Thanks,

Ross Surrency, PG Associate Geologist Leighton Consulting, Inc 17781 Cowan, Irvine, CA 92614 (949) 681-4264 – Direct (949) 880-4439 – Cell

Geotechnical | Geoenvironmental | Materials Testing

SOLUTIONS YOU CAN BUILD ON

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Thursday, November 01, 2018 6:00 PM

To: Ross Surrency

Cc: Robert Lovdahl; <u>customer.relations@atlglobal.com</u>

Subject: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Good afternoon Ross,

Please find partial results for the above project attached. Final report is pending 8081 & 8082 analyses that will be completed tomorrow (11/2). If I can further assist, please let me know.

Thanks,

Dominic Mata | Project Coordinator ADVANCED TECHNOLOGY LABORATORIES 3275 Walnut Avenue, Signal Hill CA 90755 O: 562.989.4045 ext. 238 | http://www.atlglobal.com

Laboratory

Excellence

Definea

This message is intended for the use of the individual or entity to which it is addressed. This may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you

have received this communication in error, please notify us immediately by telephone and delete the original message. Thank you.

Page 173 of 174

From:

Ross Surrency <rsurrency@leightongroup.com>

Sent:

Monday, November 05, 2018 9:13 AM

To:

Dominic Mata

Cc:

Robert Lovdahl; customer.relations@atlglobal.com

Subject:

RE: Partial Results 2 - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Dominic,

Please analyze the following sample for OCPs (8081) on a 3-day TAT.

PER1-1.5.

Thanks,

Ross Surrency, PG
Associate Geologist
Leighton Consulting, Inc
17781 Cowan, Irvine, CA 92614
(949) 681-4264 – Direct
(949) 880-4439 – Cell

Geotechnical | Geoenvironmental | Materials Testing

SOLUTIONS YOU CAN BUILD ON

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Friday, November 02, 2018 2:38 PM

To: Ross Surrency

Cc: Robert Lovdahl; customer.relations@atlglobal.com

Subject: Partial Results 2 - LAUSD-Colfax ES, 11640.008 (ATL# 1804036)

Hello Ross,

Please find an updated daft report for all analyses that were due yesterday (11/1) for the above project attached. Final report is pending additional analyses requested today due Tuesday (11/6). If I can further assist, please let me know.

Thanks,

Dominic Mata | Project Coordinator ADVANCED TECHNOLOGY LABORATORIES 3275 Walnut Avenue, Signal Hill CA 90755 O: 562.989.4045 ext. 238 | http://www.atlglobal.com

Laboratory

Excellence

Defined

This message is intended for the use of the individual or entity to which it is addressed. This may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly place in the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly place in the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly place.

ELAP No.: 1838

CSDLAC No.: 10196 ORELAP No.: CA300003

November 12, 2018

Ross Surrency Leighton Consulting, Inc.

17781 Cowan Street Irvine, CA 92614

Tel: (949) 250-1421 Fax:(949) 757-7230

Re:

ATL Work Order Number: 1804142

Client Reference: LAUSD- Colfax ES, 11640.008

Enclosed are the results for sample(s) received on November 03, 2018 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PER1-SW-0.5	1804142-01	Soil	11/03/18 7:12	11/03/18 10:46
PER1-SW-1.5	1804142-02	Soil	11/03/18 7:14	11/03/18 10:46
PER1-SE-0.5	1804142-04	Soil	11/03/18 7:21	11/03/18 10:46
PER1-SE-1.5	1804142-05	Soil	11/03/18 7:22	11/03/18 10:46
PER22-NW-0.5	1804142-07	Soil	11/03/18 8:19	11/03/18 10:46
PER22-NW-1.5	1804142-08	Soil	11/03/18 8:20	11/03/18 10:46
PER22-NE-0.5	1804142-10	Soil	11/03/18 8:25	11/03/18 10:46
PER22-NE-1.5	1804142-11	Soil	11/03/18 8:27	11/03/18 10:46
PER12-NE-0.5	1804142-13	Soil	11/03/18 7:47	11/03/18 10:46
PER12-NE-1.5	1804142-14	Soil	11/03/18 7:48	11/03/18 10:46
PER12-SE-0.5	1804142-16	Soil	11/03/18 7:42	11/03/18 10:46
PER12-SE-1.5	1804142-17	Soil	11/03/18 7:43	11/03/18 10:46
PER14-NE-0.5	1804142-19	Soil	11/03/18 7:57	11/03/18 10:46
PER14-NE-1.5	1804142-20	Soil	11/03/18 7:58	11/03/18 10:46
PER14-SE-0.5	1804142-22	Soil	11/03/18 8:03	11/03/18 10:46
PER14-SE-1.5	1804142-23	Soil	11/03/18 8:04	11/03/18 10:46
EB-2	1804142-25	Water	11/03/18 8:33	11/03/18 10:46
DRUM COMPOSITE	1804142-26	Water	11/03/18 8:55	11/03/18 10:46

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

DETECTION SUMMARY

Client Sample ID PER1-SW-0.5

Lab ID: 1804142-01

Organochlorine Pesticides by I	EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane [2C]	10	1.0	0.12	1	B8K0214	11/06/2018	11/07/18 10:23	
Chlordane [2C]	94	8.5	1.1	1	B8K0214	11/06/2018	11/07/18 10:23	
Dieldrin [2C]	39	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:23	
gamma-Chlordane	7.1	1.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:23	
Heptachlor epoxide [2C]	5.8	1.0	0.09	1	B8K0214	11/06/2018	11/07/18 10:23	

Client Sample ID PER1-SW-1.5

Lab ID: 1804142-02

Organochlorine Pesticides by EPA 8081 Ans									
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed Notes		
alpha-Chlordane [2C]	0.70	1.0	0.12	1	B8K0214	11/06/2018	11/07/18 10:33 J		
Chlordane	7.1	8.5	1.1	1	B8K0214	11/06/2018	11/07/18 10:33 J		
Dieldrin [2C]	2.7	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:33		
gamma-Chlordane	0.43	1.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:33 J		
Heptachlor epoxide [2C]	0.64	1.0	0.09	1	B8K0214	11/06/2018	11/07/18 10:33 J		

Client Sample ID PER1-SE-0.5

Organochlorine Pesticides b	y EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane [2C]	23	1.0	0.12	1	B8K0214	11/06/2018	11/07/18 10:44	
Chlordane [2C]	210	8.5	1.1	1	B8K0214	11/06/2018	11/07/18 10:44	
Dieldrin	36	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:44	
gamma-Chlordane	17	1.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:44	
Heptachlor epoxide [2C]	6.4	1.0	0.09	1	B8K0214	11/06/2018	11/07/18 10:44	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \, , CA \, 92614 \\ Reported : \quad 11/12/2018$

DETECTION SUMMARY

Client Sample ID PER22-NW-0.5

Lab ID: 1804142-07

Diesel Range Organics by EPA 8015B									
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
DRO	6.3	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:18		
ORO	7.1	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:18		

Client Sample ID PER22-NW-1.5

Lab ID: 1804142-08

Diesel Range Organics by EPA 8	8015B							Analyst: CR
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO ORO	13 18	1.0 1.0	1.0	1	B8K0252 B8K0252	11/07/2018 11/07/2018	11/07/18 19:09 11/07/18 19:09	
OKO	10	1.0	1.0	1	D6K0232	11/0//2018	11/0//18 19:09	

Client Sample ID PER22-NE-0.5

Diesel Range Organic	viesel Range Organics by EPA 8015B									
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes		
DRO	9.0	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:35			
ORO	9.6	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:35			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan StreetReport To:Ross SurrencyIrvine , CA 92614Reported:11/12/2018

DETECTION SUMMARY

Client Sample ID PER22-NE-1.5

Lab ID: 1804142-11

Diesel Range Organics by EPA 8015B										
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes		
DRO	4.8	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:52			
ORO	5.2	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:52			

Client Sample ID PER12-NE-0.5

Lab ID: 1804142-13

Total Metals by ICP-I	MS EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	6.2	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:20	D1

Client Sample ID PER12-NE-1.5

Lab ID: 1804142-14

Total Metals by ICP-MS EPA 602	20							Analyst: P1
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	1.4	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:55	D1

Client Sample ID PER12-SE-0.5

Total Metals by ICP-M	Total Metals by ICP-MS EPA 6020									
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes		
Arsenic	8.3	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:29 I	D1		

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

DETECTION SUMMARY

Client Sample ID PER12-SE-1.5

Lab ID: 1804142-17

Total Metals by ICP-MS EPA 6020									
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Arsenic	1.1	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:31 1	D1	

Client Sample ID PER14-NE-0.5

Lab ID: 1804142-19

Total Metals by ICP-MS EPA 6020									
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Arsenic	2.8	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:33 П) 1	

Client Sample ID PER14-NE-1.5

Lab ID: 1804142-20

Total Metals by ICP-MS EPA 6020									
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Arsenic	1.8	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:57 I	D1	

Client Sample ID PER14-SE-0.5

Total Metals by ICP-MS	EPA 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	2.5	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:59	D1

Zinc

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan StreetReport To:Ross SurrencyIrvine , CA 92614Reported:11/12/2018

DETECTION SUMMARY

Client Sample ID PER14-SE-1.5

Lab ID: 1804142-23

Total Metals by ICP-MS EP	A 6020							Analyst: PT
Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	0.98	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 16:01	D1. J

Client Sample ID DRUM COMPOSITE

Lab ID: 1804142-26

Title 22 Metals by ICP	-AES EPA 6010B						Analyst: GO
Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Barium	0.27	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Cadmium	0.0054	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Chromium	0.078	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Cobalt	0.020	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Copper	0.063	0.0090	1	B8K0162	11/06/2018	11/06/18 14:38	
Lead	0.060	0.0050	1	B8K0162	11/06/2018	11/06/18 14:38	
Nickel	0.064	0.0050	1	B8K0162	11/06/2018	11/06/18 14:38	
Selenium	0.017	0.010	1	B8K0162	11/06/2018	11/06/18 14:38	
Vanadium	0.049	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	

Diesel Range Organics by El	PA 8015B							Analyst: CR
Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	2.6	0.05	0.05	1	B8K0283	11/08/2018	11/08/18 12:53	
ORO	0.55	0.05	0.05	1	B8K0283	11/08/2018	11/08/18 12:53	

B8K0162

11/06/2018

11/06/18 14:38

0.025

0.48

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER1-SW-0.5 Lab ID: 1804142-01

Organochlorine Pesticides by EPA 8081

Analyst: CO/

organiorme restretaes by r								manyst. Co
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:23	
4,4´-DDE	ND	2.0	0.05	1	B8K0214	11/06/2018	11/07/18 10:23	
4,4'-DDT	ND	2.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:23	
Aldrin	ND	1.0	0.04	1	B8K0214	11/06/2018	11/07/18 10:23	
alpha-BHC	ND	1.0	0.11	1	B8K0214	11/06/2018	11/07/18 10:23	
alpha-Chlordane [2C]	10	1.0	0.12	1	B8K0214	11/06/2018	11/07/18 10:23	
beta-BHC	ND	1.0	0.06	1	B8K0214	11/06/2018	11/07/18 10:23	
Chlordane [2C]	94	8.5	1.1	1	B8K0214	11/06/2018	11/07/18 10:23	
delta-BHC	ND	1.0	0.03	1	B8K0214	11/06/2018	11/07/18 10:23	
Dieldrin [2C]	39	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:23	
Endosulfan I	ND	1.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:23	
Endosulfan II	ND	2.0	0.03	1	B8K0214	11/06/2018	11/07/18 10:23	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0214	11/06/2018	11/07/18 10:23	
Endrin	ND	2.0	0.04	1	B8K0214	11/06/2018	11/07/18 10:23	
Endrin aldehyde	ND	2.0	0.31	1	B8K0214	11/06/2018	11/07/18 10:23	
Endrin ketone	ND	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:23	
gamma-BHC	ND	1.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:23	
gamma-Chlordane	7.1	1.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:23	
Heptachlor	ND	1.0	0.05	1	B8K0214	11/06/2018	11/07/18 10:23	
Heptachlor epoxide [2C]	5.8	1.0	0.09	1	B8K0214	11/06/2018	11/07/18 10:23	
Methoxychlor	ND	5.0	0.18	1	B8K0214	11/06/2018	11/07/18 10:23	
Toxaphene	ND	50	4.7	1	B8K0214	11/06/2018	11/07/18 10:23	
Surrogate: Decachlorobiphenyl	61.0 %	4.	3 - 84		B8K0214	11/06/2018	11/07/18 10:23	
Surrogate: Tetrachloro-m-xylene	59.4 %	54	! - 118		B8K0214	11/06/2018	11/07/18 10:23	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER1-SW-1.5 Lab ID: 1804142-02

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:33	
4,4′-DDE	ND	2.0	0.05	1	B8K0214	11/06/2018	11/07/18 10:33	
4,4′-DDT	ND	2.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:33	
Aldrin	ND	1.0	0.04	1	B8K0214	11/06/2018	11/07/18 10:33	
alpha-BHC	ND	1.0	0.11	1	B8K0214	11/06/2018	11/07/18 10:33	
alpha-Chlordane [2C]	0.70	1.0	0.12	1	B8K0214	11/06/2018	11/07/18 10:33	J
beta-BHC	ND	1.0	0.06	1	B8K0214	11/06/2018	11/07/18 10:33	
Chlordane	7.1	8.5	1.1	1	B8K0214	11/06/2018	11/07/18 10:33	J
delta-BHC	ND	1.0	0.03	1	B8K0214	11/06/2018	11/07/18 10:33	
Dieldrin [2C]	2.7	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:33	
Endosulfan I	ND	1.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:33	
Endosulfan II	ND	2.0	0.03	1	B8K0214	11/06/2018	11/07/18 10:33	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0214	11/06/2018	11/07/18 10:33	
Endrin	ND	2.0	0.04	1	B8K0214	11/06/2018	11/07/18 10:33	
Endrin aldehyde	ND	2.0	0.31	1	B8K0214	11/06/2018	11/07/18 10:33	
Endrin ketone	ND	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:33	
gamma-BHC	ND	1.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:33	
gamma-Chlordane	0.43	1.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:33	J
Heptachlor	ND	1.0	0.05	1	B8K0214	11/06/2018	11/07/18 10:33	
Heptachlor epoxide [2C]	0.64	1.0	0.09	1	B8K0214	11/06/2018	11/07/18 10:33	J
Methoxychlor	ND	5.0	0.18	1	B8K0214	11/06/2018	11/07/18 10:33	
Toxaphene	ND	50	4.7	1	B8K0214	11/06/2018	11/07/18 10:33	
Surrogate: Decachlorobiphenyl	55.6 %	4.5	3 - 84		B8K0214	11/06/2018	11/07/18 10:33	
Surrogate: Tetrachloro-m-xylene	53.2 %	54	! - 118		B8K0214	11/06/2018	11/07/18 10:33	S10

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER1-SE-0.5 Lab ID: 1804142-04

Organochlorine Pesticides by EPA 8081

Analyst: CO/

organisemorme restretaes by 1								Analyst. C
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:44	
4,4′-DDE	ND	2.0	0.05	1	B8K0214	11/06/2018	11/07/18 10:44	
4,4′-DDT	ND	2.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:44	
Aldrin	ND	1.0	0.04	1	B8K0214	11/06/2018	11/07/18 10:44	
alpha-BHC	ND	1.0	0.11	1	B8K0214	11/06/2018	11/07/18 10:44	
alpha-Chlordane [2C]	23	1.0	0.12	1	B8K0214	11/06/2018	11/07/18 10:44	
beta-BHC	ND	1.0	0.06	1	B8K0214	11/06/2018	11/07/18 10:44	
Chlordane [2C]	210	8.5	1.1	1	B8K0214	11/06/2018	11/07/18 10:44	
delta-BHC	ND	1.0	0.03	1	B8K0214	11/06/2018	11/07/18 10:44	
Dieldrin	36	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:44	
Endosulfan I	ND	1.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:44	
Endosulfan II	ND	2.0	0.03	1	B8K0214	11/06/2018	11/07/18 10:44	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0214	11/06/2018	11/07/18 10:44	
Endrin	ND	2.0	0.04	1	B8K0214	11/06/2018	11/07/18 10:44	
Endrin aldehyde	ND	2.0	0.31	1	B8K0214	11/06/2018	11/07/18 10:44	
Endrin ketone	ND	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:44	
gamma-BHC	ND	1.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:44	
gamma-Chlordane	17	1.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:44	
Heptachlor	ND	1.0	0.05	1	B8K0214	11/06/2018	11/07/18 10:44	
Heptachlor epoxide [2C]	6.4	1.0	0.09	1	B8K0214	11/06/2018	11/07/18 10:44	
Methoxychlor	ND	5.0	0.18	1	B8K0214	11/06/2018	11/07/18 10:44	
Toxaphene	ND	50	4.7	1	B8K0214	11/06/2018	11/07/18 10:44	
Surrogate: Decachlorobiphenyl	55.2 %	43	3 - 84		B8K0214	11/06/2018	11/07/18 10:44	
Surrogate: Tetrachloro-m-xylene	61.3 %	54	- 118		B8K0214	11/06/2018	11/07/18 10:44	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER1-SE-1.5 Lab ID: 1804142-05

Organochlorine Pesticides by EPA 8081

Analyst: CO/

organication inc resticites by i	31110001							Analyst. Co
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDD	ND	2.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:54	
4,4´-DDE	ND	2.0	0.05	1	B8K0214	11/06/2018	11/07/18 10:54	
4,4′-DDT	ND	2.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:54	
Aldrin	ND	1.0	0.04	1	B8K0214	11/06/2018	11/07/18 10:54	
alpha-BHC	ND	1.0	0.11	1	B8K0214	11/06/2018	11/07/18 10:54	
alpha-Chlordane	ND	1.0	0.12	1	B8K0214	11/06/2018	11/07/18 10:54	
beta-BHC	ND	1.0	0.06	1	B8K0214	11/06/2018	11/07/18 10:54	
Chlordane	ND	8.5	1.1	1	B8K0214	11/06/2018	11/07/18 10:54	
delta-BHC	ND	1.0	0.03	1	B8K0214	11/06/2018	11/07/18 10:54	
Dieldrin	ND	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:54	
Endosulfan I	ND	1.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:54	
Endosulfan II	ND	2.0	0.03	1	B8K0214	11/06/2018	11/07/18 10:54	
Endosulfan sulfate	ND	2.0	0.08	1	B8K0214	11/06/2018	11/07/18 10:54	
Endrin	ND	2.0	0.04	1	B8K0214	11/06/2018	11/07/18 10:54	
Endrin aldehyde	ND	2.0	0.31	1	B8K0214	11/06/2018	11/07/18 10:54	
Endrin ketone	ND	2.0	0.13	1	B8K0214	11/06/2018	11/07/18 10:54	
gamma-BHC	ND	1.0	0.10	1	B8K0214	11/06/2018	11/07/18 10:54	
gamma-Chlordane	ND	1.0	0.07	1	B8K0214	11/06/2018	11/07/18 10:54	
Heptachlor	ND	1.0	0.05	1	B8K0214	11/06/2018	11/07/18 10:54	
Heptachlor epoxide	ND	1.0	0.09	1	B8K0214	11/06/2018	11/07/18 10:54	
Methoxychlor	ND	5.0	0.18	1	B8K0214	11/06/2018	11/07/18 10:54	
Toxaphene	ND	50	4.7	1	B8K0214	11/06/2018	11/07/18 10:54	
Surrogate: Decachlorobiphenyl	55.7 %	43	3 - 84	·	B8K0214	11/06/2018	11/07/18 10:54	
Surrogate: Tetrachloro-m-xylene	48.4 %	54	- 118		B8K0214	11/06/2018	11/07/18 10:54	S10

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER22-NW-0.5 Lab ID: 1804142-07

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	6.3	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:18	
ORO	7.1	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:18	
Surrogate: p-Terphenyl	72.5 %	34	- 158		B8K0252	11/07/2018	11/07/18 18:18	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER22-NW-1.5 Lab ID: 1804142-08

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	13	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 19:09	
ORO	18	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 19:09	
Surrogate: p-Terphenyl	90.7 %	34	- 158		B8K0252	11/07/2018	11/07/18 19:09	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To : Ross Surrency Irvine , CA 92614 Reported : 11/12/2018

Client Sample ID PER22-NE-0.5 Lab ID: 1804142-10

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	9.0	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:35	
ORO	9.6	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:35	
Surrogate: p-Terphenyl	61.1 %	34	! - 158		B8K0252	11/07/2018	11/07/18 18:35	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER22-NE-1.5 Lab ID: 1804142-11

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	4.8	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:52	
ORO	5.2	1.0	1.0	1	B8K0252	11/07/2018	11/07/18 18:52	
Surrogate: p-Terphenyl	64.8 %	34	- 158		B8K0252	11/07/2018	11/07/18 18:52	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER12-NE-0.5 Lab ID: 1804142-13

Total Metals by ICP-MS EPA 6020

Analyst: PT

	Result	PQL	MDL			Date/Time			
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes	
Arsenic	6.2	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:20	D1	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER12-NE-1.5 Lab ID: 1804142-14

Total Metals by ICP-MS EPA 6020

Analyst: PT

	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	1.4	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:55	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/12/2018$

Client Sample ID PER12-SE-0.5 Lab ID: 1804142-16

Total Metals by ICP-MS EPA 6020

	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	8.3	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:29	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER12-SE-1.5 Lab ID: 1804142-17

Total Metals by ICP-MS EPA 6020

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	1.1	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:31	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER14-NE-0.5 Lab ID: 1804142-19

Total Metals by ICP-MS EPA 6020

	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	2.8	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:33	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

> **Client Sample ID PER14-NE-1.5** Lab ID: 1804142-20

Total Metals by ICP-MS EPA 6020

	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	1.8	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:57	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER14-SE-0.5 Lab ID: 1804142-22

Total Metals by ICP-MS EPA 6020

	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	2.5	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 15:59	D1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID PER14-SE-1.5 Lab ID: 1804142-23

Total Metals by ICP-MS EPA 6020

	Result	PQL	MDL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Arsenic	0.98	1.0	0.04	20	B8K0153	11/05/2018	11/07/18 16:01	D1, J

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

> **Client Sample ID EB-2** Lab ID: 1804142-25

Total Metals	by	ICP-AES	EPA 6010B
---------------------	----	----------------	-----------

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Lead	ND	0.0050	0.0047	1	B8K0184	11/06/2018	11/06/18 15:04	

Total Metals by ICP-MS EPA 6020

Analyst: PT

	Result	PQL	MDL				Date/Time		
Analyte	(ug/L)	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes	
Arsenic	ND	1.0	0.39	1	B8K0155	11/05/2018	11/08/18 11:07		

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
Mercury	ND	0.20	1	B8K0164	11/06/2018	11/06/18 12:40	_

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: VW

Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	0.20	0.05	1	B8K0118	11/05/2018	11/05/18 12:30	
Surrogate: 4-Bromofluorobenzene	91.1 %	70	- 130		B8K0118	11/05/2018	11/05/18 12:30	

Diesel Range Organics by EPA 8015B

Analyst: CR

Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	ND	0.05	0.05	1	B8K0283	11/08/2018	11/08/18 12:36	
ORO	ND	0.05	0.05	1	B8K0283	11/08/2018	11/08/18 12:36	
Surrogate: n-Terphenyl	137 %	32	2 - 169		B8K0283	11/08/2018	11/08/18 12:36	

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/L)	PQL (ug/L)	MDL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	0.05	0.006	1	B8K0268	11/07/2018	11/07/18 16:48	
4,4′-DDE	ND	0.05	0.005	1	B8K0268	11/07/2018	11/07/18 16:48	
4,4′-DDT	ND	0.05	0.01	1	B8K0268	11/07/2018	11/07/18 16:48	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

> **Client Sample ID EB-2** Lab ID: 1804142-25

Organochlorine Pesticides by EPA 8081

Analyst: CO/

Analyte	Result (ug/L)	PQL (ug/L)	MDL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aldrin	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
alpha-BHC	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
alpha-Chlordane	ND	0.02	0.003	1	B8K0268	11/07/2018	11/07/18 16:48	
beta-BHC	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
Chlordane	ND	0.25	0.03	1	B8K0268	11/07/2018	11/07/18 16:48	
delta-BHC	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
Dieldrin	ND	0.05	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
Endosulfan I	ND	0.02	0.005	1	B8K0268	11/07/2018	11/07/18 16:48	
Endosulfan II	ND	0.05	0.009	1	B8K0268	11/07/2018	11/07/18 16:48	
Endosulfan sulfate	ND	0.05	0.01	1	B8K0268	11/07/2018	11/07/18 16:48	
Endrin	ND	0.05	0.005	1	B8K0268	11/07/2018	11/07/18 16:48	
Endrin aldehyde	ND	0.05	0.003	1	B8K0268	11/07/2018	11/07/18 16:48	
Endrin ketone	ND	0.05	0.003	1	B8K0268	11/07/2018	11/07/18 16:48	
gamma-BHC	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
gamma-Chlordane	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
Heptachlor	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
Heptachlor epoxide	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:48	
Methoxychlor	ND	0.25	0.008	1	B8K0268	11/07/2018	11/07/18 16:48	
Toxaphene	ND	2.5	0.23	1	B8K0268	11/07/2018	11/07/18 16:48	
Surrogate: Decachlorobiphenyl	53.0 %	8 -	- 128		B8K0268	11/07/2018	11/07/18 16:48	
Surrogate: Tetrachloro-m-xylene	50.6 %	32	- 126		B8K0268	11/07/2018	11/07/18 16:48	

Polychlorinated Biphenyls by EPA 8082

Analyst: CO/

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Aroclor 1016	ND	0.50	1	B8K0268	11/07/2018	11/07/18 15:57	
Aroclor 1221	ND	1.0	1	B8K0268	11/07/2018	11/07/18 15:57	
Aroclor 1232	ND	0.50	1	B8K0268	11/07/2018	11/07/18 15:57	
Aroclor 1242	ND	0.50	1	B8K0268	11/07/2018	11/07/18 15:57	
Aroclor 1248	ND	0.50	1	B8K0268	11/07/2018	11/07/18 15:57	
Aroclor 1254	ND	0.50	1	B8K0268	11/07/2018	11/07/18 15:57	
Aroclor 1260	ND	0.50	1	B8K0268	11/07/2018	11/07/18 15:57	
Aroclor 1262	ND	0.50	1	B8K0268	11/07/2018	11/07/18 15:57	
Aroclor 1268	ND	0.50	1	B8K0268	11/07/2018	11/07/18 15:57	
Surrogate: Decachlorobiphenyl	58.7 %	8 - 128		B8K0268	11/07/2018	11/07/18 15:57	
Surrogate: Tetrachloro-m-xylene	86.3 %	32 - 126		B8K0268	11/07/2018	11/07/18 15:57	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID DRUM COMPOSITE Lab ID: 1804142-26

Title 22 Metals by ICP-AES EPA 6010B

Analyst: GO

Analyte	Result (mg/L)	PQL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Antimony	ND	0.010	1	B8K0162	11/06/2018	11/06/18 14:38	
Arsenic	ND	0.010	1	B8K0162	11/06/2018	11/06/18 14:38	
Barium	0.27	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Beryllium	ND	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Cadmium	0.0054	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Chromium	0.078	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Cobalt	0.020	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Copper	0.063	0.0090	1	B8K0162	11/06/2018	11/06/18 14:38	
Lead	0.060	0.0050	1	B8K0162	11/06/2018	11/06/18 14:38	
Molybdenum	ND	0.0050	1	B8K0162	11/06/2018	11/06/18 14:38	
Nickel	0.064	0.0050	1	B8K0162	11/06/2018	11/06/18 14:38	
Selenium	0.017	0.010	1	B8K0162	11/06/2018	11/06/18 14:38	
Silver	ND	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Thallium	ND	0.015	1	B8K0162	11/06/2018	11/06/18 14:38	
Vanadium	0.049	0.0030	1	B8K0162	11/06/2018	11/06/18 14:38	
Zinc	0.48	0.025	1	B8K0162	11/06/2018	11/06/18 14:38	

Mercury by AA (Cold Vapor) EPA 7470A

Analyst: KEK

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Mercury	ND	0.20	1	B8K0164	11/06/2018	11/06/18 12:41	

Diesel Range Organics by EPA 8015B

Analyst: CR

Analyte	Result (mg/L)	PQL (mg/L)	MDL (mg/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	2.6	0.05	0.05	1	B8K0283	11/08/2018	11/08/18 12:53	'
ORO	0.55	0.05	0.05	1	B8K0283	11/08/2018	11/08/18 12:53	
Surrogate: p-Terphenyl	25.0 %	32	- 169		B8K0283	11/08/2018	11/08/18 12:53	S13

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID DRUM COMPOSITE Lab ID: 1804142-26

Organochlorine Pesticides by EPA 8081

Analyst: CO/

- 8								rmaryst. CO
Analyte	Result (ug/L)	PQL (ug/L)	MDL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	0.05	0.006	1	B8K0268	11/07/2018	11/07/18 16:59	
4,4′-DDE	ND	0.05	0.005	1	B8K0268	11/07/2018	11/07/18 16:59	
4,4′-DDT	ND	0.05	0.01	1	B8K0268	11/07/2018	11/07/18 16:59	
Aldrin	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
alpha-BHC	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
alpha-Chlordane	ND	0.02	0.003	1	B8K0268	11/07/2018	11/07/18 16:59	
beta-BHC	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
Chlordane	ND	0.25	0.03	1	B8K0268	11/07/2018	11/07/18 16:59	
delta-BHC	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
Dieldrin	ND	0.05	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
Endosulfan I	ND	0.02	0.005	1	B8K0268	11/07/2018	11/07/18 16:59	
Endosulfan II	ND	0.05	0.009	1	B8K0268	11/07/2018	11/07/18 16:59	
Endosulfan sulfate	ND	0.05	0.01	1	B8K0268	11/07/2018	11/07/18 16:59	
Endrin	ND	0.05	0.005	1	B8K0268	11/07/2018	11/07/18 16:59	
Endrin aldehyde	ND	0.05	0.003	1	B8K0268	11/07/2018	11/07/18 16:59	
Endrin ketone	ND	0.05	0.003	1	B8K0268	11/07/2018	11/07/18 16:59	
gamma-BHC	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
gamma-Chlordane	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
Heptachlor	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
Heptachlor epoxide	ND	0.02	0.002	1	B8K0268	11/07/2018	11/07/18 16:59	
Methoxychlor	ND	0.25	0.008	1	B8K0268	11/07/2018	11/07/18 16:59	
Toxaphene	ND	2.5	0.23	1	B8K0268	11/07/2018	11/07/18 16:59	
Surrogate: Decachlorobiphenyl	6.37 %	8	- 128		B8K0268	11/07/2018	11/07/18 16:59	S10
Surrogate: Tetrachloro-m-xylene	37.1 %	32	2 - 126		B8K0268	11/07/2018	11/07/18 16:59	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID DRUM COMPOSITE Lab ID: 1804142-26

Volatile Organic Compounds by EPA 8260B

volathe Organic Compounds by	21.102000						Analyst. Qi
	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,1,1-Trichloroethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,1,2,2-Tetrachloroethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,1,2-Trichloroethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,1-Dichloroethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,1-Dichloroethene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,1-Dichloropropene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2,3-Trichloropropane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2,3-Trichlorobenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2,4-Trichlorobenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2,4-Trimethylbenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2-Dibromo-3-chloropropane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2-Dibromoethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2-Dichlorobenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2-Dichloroethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,2-Dichloropropane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,3,5-Trimethylbenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,3-Dichlorobenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,3-Dichloropropane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
1,4-Dichlorobenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
2,2-Dichloropropane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
2-Chlorotoluene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
4-Chlorotoluene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
4-Isopropyltoluene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Benzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Bromobenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Bromochloromethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Bromodichloromethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Bromoform	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Bromomethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Carbon disulfide	ND	50	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Carbon tetrachloride	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Chlorobenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Chloroethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Chloroform	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Chloromethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
cis-1,2-Dichloroethene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
cio 1,2 Diemorocuicie	ND	23	50	D0IX0323	11/0//2010	11/0//10 17.13	וע

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID DRUM COMPOSITE Lab ID: 1804142-26

Volatile Organic Compounds by EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ug/L)	(ug/L)	Dilution	Batch	Prepared	Analyzed	Notes
cis-1,3-Dichloropropene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Di-isopropyl ether	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Dibromochloromethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Dibromomethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Dichlorodifluoromethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Ethyl Acetate	ND	500	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Ethyl Ether	ND	500	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Ethyl tert-butyl ether	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Ethylbenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Freon-113	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Hexachlorobutadiene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Isopropylbenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
m,p-Xylene	ND	50	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Methylene chloride	ND	50	50	B8K0325	11/09/2018	11/09/18 19:15	D7
MTBE	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
n-Butylbenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
n-Propylbenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Naphthalene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
o-Xylene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
sec-Butylbenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Styrene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
tert-Amyl methyl ether	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
tert-Butanol	ND	500	50	B8K0325	11/09/2018	11/09/18 19:15	D7
tert-Butylbenzene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Tetrachloroethene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Toluene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
trans-1,2-Dichloroethene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
trans-1,3-Dichloropropene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Trichloroethene	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Trichlorofluoromethane	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Vinyl acetate	ND	500	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Vinyl chloride	ND	25	50	B8K0325	11/09/2018	11/09/18 19:15	D7
Gasoline Range Organics	ND	2500	50	B8K0328	11/09/2018	11/09/18 19:15	D7
Surrogate: 1,2-Dichloroethane-d4	85.3 %	57 - 152		B8K0328	11/09/2018	11/09/18 19:15	
Surrogate: 1,2-Dichloroethane-d4	88.9 %	57 - 152		B8K0325	11/09/2018	11/09/18 19:15	
Surrogate: 4-Bromofluorobenzene	93.6 %	62 - 134		B8K0328	11/09/2018	11/09/18 19:15	
Surrogate: 4-Bromofluorobenzene	96.1 %	62 - 134		B8K0325	11/09/2018	11/09/18 19:15	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Client Sample ID DRUM COMPOSITE Lab ID: 1804142-26

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/L)	PQL (ug/L)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Surrogate: Dibromofluoromethane	80.0 %	56 - 167		B8K0325	11/09/2018	11/09/18 19:15	
Surrogate: Dibromofluoromethane	78.7 %	56 - 167		B8K0328	11/09/2018	11/09/18 19:15	
Surrogate: Toluene-d8	97.7 %	33 - 170		B8K0325	11/09/2018	11/09/18 19:15	
Surrogate: Toluene-d8	93.5 %	33 - 170		B8K0328	11/09/2018	11/09/18 19:15	

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

QUALITY CONTROL SECTION

Total Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0184 - EPA 3010A_W										
Blank (B8K0184-BLK1)					Prepared:	11/6/2018 Ar	nalyzed: 11/6/20	018		
Lead	ND	0.0050	0.0047							
LCS (B8K0184-BS1)					Prepared:	11/6/2018 Ar	nalyzed: 11/6/20	018		
Lead	1.03283	0.0050	0.0047	1.00000		103	80 - 120			
Duplicate (B8K0184-DUP1)		Sou	ırce: 18041	42-25	Prepared:	11/6/2018 Ar	nalyzed: 11/6/20	018		
Lead	ND	0.0050	0.0047		ND			NR	20	
Matrix Spike (B8K0184-MS1)		Sou	ırce: 18041	42-25	Prepared:	11/6/2018 Ar	nalyzed: 11/6/20	018		
Lead	2.17177	0.0050	0.0047	2.50000	ND	86.9	59 - 123			
Matrix Spike Dup (B8K0184-MSD1)		Sou	ırce: 18041	42-25	Prepared:	11/6/2018 Ar	nalyzed: 11/6/20	018		
Lead	2.17222	0.0050	0.0047	2.50000	ND	86.9	59 - 123	0.0204	20	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Title 22 Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D / L DOMO1/A FD / 2010 /	***									
Batch B8K0162 - EPA 3010A_	_W									
Blank (B8K0162-BLK1)					Prepared	d: 11/6/2018	Analyzed: 11/6/	2018		
Antimony	ND	0.010	0.0088							
Arsenic	ND	0.010	0.0078							
Barium	ND	0.0030	0.0026							
Beryllium	ND	0.0030	0.0016							
Cadmium	ND	0.0030	0.0024							
Chromium	ND	0.0030	0.0020							
Cobalt	ND	0.0030	0.0016							
Copper	ND	0.0090	0.0038							
Lead	ND	0.0050	0.0047							
Molybdenum	ND	0.0050	0.0030							
Nickel	ND	0.0050	0.0046							
Selenium	ND	0.010	0.0093							
Silver	ND	0.0030	0.0024							
Thallium	ND	0.015	0.0085							
Vanadium	ND	0.0030	0.0022							
Zinc	ND	0.025	0.0057							
LCS (B8K0162-BS1)					Prepared	d: 11/6/2018	Analyzed: 11/6/	2018		
Antimony	1.05976	0.010	0.0088	1.00000		106	80 - 120			
Arsenic	0.977915	0.010	0.0038	1.00000		97.8	80 - 120			
Barium	0.992850	0.010	0.0078	1.00000		99.3	80 - 120			
	0.992830	0.0030		1.00000		99.3 92.4	80 - 120 80 - 120			
Beryllium Cadmium	0.923972		0.0016 0.0024	1.00000		92.4	80 - 120 80 - 120			
		0.0030								
Chromium	1.04333	0.0030	0.0020	1.00000		104	80 - 120			
Cobalt	0.965722	0.0030	0.0016	1.00000		96.6	80 - 120			
Copper	0.932056	0.0090	0.0038	1.00000		93.2	80 - 120			
Lead	0.969196	0.0050	0.0047	1.00000		96.9	80 - 120			
Molybdenum	0.961850	0.0050	0.0030	1.00000		96.2	80 - 120			
Nickel	1.01068	0.0050	0.0046	1.00000		101	80 - 120			
Selenium	0.969677	0.010	0.0093	1.00000		97.0	80 - 120			
Silver	0.970450	0.0030	0.0024	1.00000		97.0	80 - 120			
Thallium	0.972826	0.015	0.0085	1.00000		97.3	80 - 120			
Vanadium	0.968074	0.0030	0.0022	1.00000		96.8	80 - 120			
Zinc	0.927121	0.025	0.0057	1.00000		92.7	80 - 120			
Duplicate (B8K0162-DUP1)		S	ource: 18041	42-26	Prepared	d: 11/6/2018	Analyzed: 11/6/	2018		
Antimony	ND	0.010	0.0088		ND			NR	20	
Arsenic	ND	0.010	0.0078		ND			NR	20	
Barium	0.269150	0.0030	0.0026		0.267859			0.481	20	
Beryllium	ND	0.0030	0.0016		ND			NR	20	
Cadmium	0.005049	0.0030	0.0024		0.005414			6.98	20	
Chromium	0.076102	0.0030	0.0020		0.078103			2.59	20	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

Raniple		Result	PQL	MDL	Spike	Source		% Rec		RPD	
Propinciate (B8K0162-DUP1) - Combine Cobali	Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Propinciate (B8K0162-DUP1) - Combine Cobali											
Cobalt	Batch B8K0162 - EPA 3010A	A_W (continued)									
Copper 0.064500 0.0090 0.0038 0.0030 0.0030 0.0030 0.006049 0.006049 0.006049 0.006049 0.006049 0.006049 0.006049 0.006049 0.006049 0.0060340 0.006340 0.00	Duplicate (B8K0162-DUP1) - C	Continued	S	ource: 18041	142-26	Prepared	: 11/6/2018	Analyzed: 11/6/	2018		
Leud	Cobalt	0.020021	0.0030	0.0016		0.019992			0.147	20	
Molyodednum ND 0.0050 0.0030 0.0046 0.00 0.0637 0.01 4.25 2.0 NE 4.25 2.0 NE 4.25 2.0 R NE 4.25 2.0 R S 1.0 0.00680 0.00460 0.00680 0.00680 0.00680 0.00680 0.00680 ND ND ND ND 0.00680 ND	Copper	0.064500	0.0090	0.0038		0.063301			1.88	20	
Nickel	Lead	0.062398	0.0050	0.0047		0.060249			3.50	20	
Selenium 0,012754 0,010 0,003 0,002	Molybdenum	ND	0.0050	0.0030		ND			NR	20	
Silver	Nickel	0.061087	0.0050	0.0046		0.063740			4.25	20	
Thallium 0.011038 0.015 0.0085 ND ND NR 2.0 Vanadium 0.050246 0.0030 0.0022 0.048991 2.53 20 Matrix Spike (BSK0162-MS1) Forure: 1804142-26 Prepared: 11/6/2018 x-lasyzed: 11/6/2018 Antimony 2.59525 0.010 0.0088 2.50000 ND 109 63-131 Arsenic 2.70015 0.003 0.0026 2.50000 ND 109 63-131 Barium 2.707015 0.003 0.0026 2.50000 ND 109 63-131 Beryllium 2.32743 0.003 0.0016 2.50000 0.058789 97.3 66-126 Cobalt 2.41348 0.003 0.0016 2.50000 0.005414 96.3 59-124 Cobalt 2.40642 0.003 0.0016 2.50000 0.018913 92.7 63-125 Cobalt 2.40642 0.003 0.0016 2.50000 0.018992 95.5 62-125 <t< td=""><td>Selenium</td><td>0.012754</td><td>0.010</td><td>0.0093</td><td></td><td>0.016808</td><td></td><td></td><td>27.4</td><td>20</td><td>R</td></t<>	Selenium	0.012754	0.010	0.0093		0.016808			27.4	20	R
Vanadium	Silver	ND	0.0030	0.0024		ND			NR	20	
Matrix Spike (B8K0162-MS1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Matrix Spike (B8K0162-MS1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Antimony 2.59525 0.010 0.0088 2.50000 ND 109 63 - 131 Barium 2.70015 0.0030 0.0026 2.50000 ND 109 63 - 131 Beryllium 2.32743 0.0030 0.0016 2.50000 ND 93.1 66 - 126 Cadmium 2.41348 0.0030 0.0012 2.50000 0.05414 96.3 59 - 124 Chromium 2.39624 0.0030 0.0012 2.50000 0.078103 92.7 63 - 127 Cobalt 2.40642 0.0030 0.0016 2.50000 0.063301 107 59 - 139 Lead 2.48162 0.0050 0.0047 2.50000 0.060249 96.9 59 - 123 Lead 2.48162 0.0050 0.0048 2.50000 ND 99.4 30 - 169 <td>Thallium</td> <td>0.011038</td> <td>0.015</td> <td>0.0085</td> <td></td> <td>ND</td> <td></td> <td></td> <td>NR</td> <td>20</td> <td></td>	Thallium	0.011038	0.015	0.0085		ND			NR	20	
Matrix Spike (B8K0162-MS1)	Vanadium	0.050246	0.0030	0.0022		0.048991			2.53	20	
Antimony 2.59525 0.010 0.0088 2.50000 ND 104 66 - 127 Arsenic 2.72600 0.010 0.0078 2.50000 ND 109 63 - 131 Barium 2.70015 0.0030 0.0026 2.50000 0.267859 97.3 62 - 129 Beryllium 2.32743 0.0030 0.0016 2.50000 ND 93.1 66 - 126 Cadmium 2.41348 0.0030 0.0024 2.50000 0.005414 96.3 59 - 124 Chromium 2.39624 0.0030 0.0016 2.50000 0.0078103 92.7 63 - 127 Cobalt 2.40642 0.0030 0.0016 2.50000 0.0078103 92.7 63 - 127 Copper 2.74224 0.0090 0.0038 2.50000 0.063310 107 59 - 139 Lead 2.48162 0.0050 0.0047 2.50000 0.06249 96.9 59 - 123 Molybdenum 2.48538 0.0050 0.0046 2.50000 0.06249 96.9 59 - 123 Molybdenum 2.245128 0.0050 0.0046 2.50000 0.06380 104 55 - 136 Silver 2.76588 0.0030 0.0016 2.50000 0.016808 104 55 - 136 Silver 2.76588 0.0030 0.0024 2.50000 0.016808 104 55 - 136 Silver 2.76588 0.0030 0.0022 2.50000 0.04891 93.7 63 - 131 Zinc 2.96144 0.025 0.0057 2.50000 0.479620 99.3 50 - 131 Matrix Spike Dup (B8K0162-MSD1) Antimony 2.64728 0.010 0.0088 2.50000 0.479620 99.3 50 - 131 Matrix Spike Dup (B8K0162-MSD1) Antimony 2.64728 0.010 0.0088 2.50000 ND ND 111 68 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0088 2.50000 ND ND 111 63 - 131 1.68 20 Beryllium 2.36136 0.0030 0.0024 2.50000 ND ND 111 63 - 131 1.68 20 Beryllium 2.36136 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Beryllium 2.45553 0.0030 0.0024 2.50000 ND ND 111 63 - 131 1.68 20 Beryllium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.45553 0.0030 0.0030 0.0026 2.50000 ND ND 111 63 - 131 1.68 20 Codmium 2.4	Zinc	0.492986	0.025	0.0057		0.479620			2.75	20	
Arsenice 2.72600 0.010 0.0078 2.50000 ND 109 63 - 131 Barium 2.70015 0.0030 0.0026 2.50000 0.267859 97.3 62 - 129 Formula 2.32743 0.0030 0.0016 2.50000 0.005414 96.3 59 - 124 Chromium 2.41348 0.0030 0.0024 2.50000 0.005414 96.3 59 - 124 Chromium 2.39624 0.0030 0.0016 2.50000 0.005414 96.3 59 - 124 Chromium 2.34662 0.0030 0.0016 2.50000 0.005414 96.3 59 - 124 Chromium 2.441642 0.0030 0.0016 2.50000 0.001992 95.5 62 - 125 Copper 2.74224 0.0090 0.0038 2.50000 0.00391 107 59 - 139 Lead 2.48162 0.0050 0.0047 2.5000 0.060249 96.9 59 - 123 Lead 2.48162 0.0050 0.0046 2.50000 0.060249 96.9 59 - 123 Kiscle 2.45128 0.0050 0.0046 2.50000 0.06331 107 59 - 139 Lead 2.45138 0.0050 0.0046 2.50000 0.06340 95.5 60 - 125 Selenium 2.61360 0.010 0.0093 2.50000 ND 99.5 60 - 125 Selenium 2.61360 0.010 0.0093 2.50000 ND 111 58 - 139 Thallium 2.2079 0.015 0.0085 2.50000 ND 111 58 - 139 Vanadium 2.39027 0.0030 0.0022 2.50000 0.04808 104 55 - 136 Silver 2.76588 0.0030 0.0022 2.50000 0.04808 104 55 - 136 Silver 2.96144 0.025 0.0085 2.50000 ND 111 58 - 139 Vanadium 2.39027 0.0030 0.0022 2.50000 0.04891 93.7 63 - 131 Zinc 2.96144 0.025 0.0087 2.50000 0.479620 99.3 50 - 131 Thallium 2.2077 0.0030 0.0022 2.50000 0.04891 93.7 63 - 131 Endrium 2.77224 0.010 0.0088 2.50000 ND 111 66 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0078 2.50000 ND 111 63 - 131 1.68 20 Barium 2.74144 0.0030 0.0026 2.50000 0.05910 99.2 62 - 129 1.74 20 Beryllium 2.36136 0.0030 0.0024 2.50000 0.05414 97.9 59 - 124 1.65 20 Codmium 2.45553 0.0030 0.0024 2.50000 0.00541 97.9 59 - 124 1.65 20 Codmium 2.45553 0.0030 0.0024 2.50000 0.00541 97.9 59 - 124 1.65 20 Cobalt 2.43872 0.0030 0.0026 2.50000 0.00541 97.9 59 - 124 1.65 20 Cobalt 2.43872 0.0030 0.0026 2.50000 0.00541 97.9 59 - 124 1.65 20 Cobalt 2.43872 0.0030 0.0026 2.50000 0.00541 97.9 59 - 124 1.65 20 Cobalt 2.43872 0.0030 0.0026 2.50000 0.00541 97.9 59 - 124 Cobalt 2.43872 0.0030 0.0030 2.50000 0.00541 97.9 59 - 123 Cobalt 2.43872 0.0030 0.0030 2.50000 0.005301 107 59 - 139 0.0290 20 Cobal	Matrix Spike (B8K0162-MS1)		S	ource: 18041	142-26	Prepared	: 11/6/2018	Analyzed: 11/6/	2018		
Barium 2.70015 0.0030 0.0026 2.50000 0.267859 9.3 62 - 129 Beryllium 2.32743 0.0030 0.0016 2.50000 ND 9.3 66 - 126 Cadmium 2.41348 0.0030 0.0024 2.50000 0.078103 92.7 63 - 127 Chobalt 2.40642 0.0030 0.0016 2.50000 0.078103 92.7 63 - 127 Copper 2.74224 0.0090 0.0038 2.50000 0.063301 107 59 - 139 Lead 2.48162 0.0050 0.0047 2.50000 0.060249 96.9 59 - 123 Molybdenum 2.48518 0.0050 0.0046 2.50000 ND 99.4 30 - 169 Nickel 2.45128 0.0050 0.0046 2.50000 0.063740 95.5 60 - 125 Selenium 2.61360 0.010 0.0093 2.50000 ND 99.3 0.5136 Thallium 2.20979 0.015 0.0085 2.50	Antimony	2.59525	0.010	0.0088	2.50000	ND	104	66 - 127			
Barium 2.70015 0.0030 0.0026 2.50000 0.267859 9.3 62 - 129 Beryllium 2.32743 0.0030 0.0016 2.50000 ND 9.3 66 - 126 Cadmium 2.41348 0.0030 0.0024 2.50000 0.078103 92.7 63 - 127 Chobalt 2.40642 0.0030 0.0016 2.50000 0.078103 92.7 63 - 127 Copper 2.74224 0.0090 0.0038 2.50000 0.063301 107 59 - 139 Lead 2.48162 0.0050 0.0047 2.50000 0.060249 96.9 59 - 123 Molybdenum 2.48518 0.0050 0.0046 2.50000 ND 99.4 30 - 169 Nickel 2.45128 0.0050 0.0046 2.50000 0.063740 95.5 60 - 125 Selenium 2.61360 0.010 0.0093 2.50000 ND 99.3 0.5136 Thallium 2.20979 0.015 0.0085 2.50	Arsenic	2.72600	0.010	0.0078	2.50000	ND	109				
Cadmium 2.41348 0.0030 0.0024 2.50000 0.005414 96.3 59 - 124 Chromium 2.39624 0.0030 0.0020 2.50000 0.078103 92.7 63 - 127 Cobalt 2.40642 0.0030 0.0016 2.50000 0.019992 95.5 62 - 125 Copper 2.74224 0.0090 0.0038 2.50000 0.060301 107 59 - 139 Lead 2.48162 0.0050 0.0047 2.50000 0.060249 96.9 59 - 123 Nickel 2.45128 0.0050 0.0046 2.50000 ND 99.4 30 - 169 Silver 2.76588 0.0050 0.0046 2.50000 0.016808 104 55 - 136 Silver 2.76588 0.0030 0.0022 2.50000 ND 111 58 - 139 Thallium 2.20979 0.015 0.0085 2.50000 ND 88.4 68 - 11 MI Vanadium 2.39027 0.0030 0.0022	Barium	2.70015	0.0030	0.0026	2.50000		97.3	62 - 129			
Cadmium 2.41348 0.0030 0.0024 2.50000 0.005414 96.3 59 - 124 Chromium 2.39624 0.0030 0.0020 2.50000 0.078103 92.7 63 - 127 Cobalt 2.40642 0.0030 0.0016 2.50000 0.019992 95.5 62 - 125 Copper 2.74224 0.0090 0.0038 2.50000 0.060301 107 59 - 139 Lead 2.48162 0.0050 0.0047 2.50000 0.060249 96.9 59 - 123 Nickel 2.48128 0.0050 0.0046 2.50000 ND 99.4 30 - 169 Selenium 2.61360 0.010 0.0093 2.50000 0.016808 104 55 - 136 Silver 2.76588 0.0030 0.0024 2.50000 ND 88.4 68 - 11 MI Vanadium 2.20979 0.015 0.0085 2.50000 ND 88.4 68 - 11 MI Vanadium 2.96144 0.025	Beryllium	2.32743	0.0030	0.0016	2.50000	ND	93.1	66 - 126			
Chromium	•	2.41348	0.0030	0.0024	2.50000	0.005414	96.3	59 - 124			
Copper	Chromium	2.39624	0.0030	0.0020	2.50000	0.078103		63 - 127			
Lead	Cobalt	2.40642	0.0030	0.0016	2.50000	0.019992	95.5	62 - 125			
Lead 2.48162 0.0050 0.0047 2.50000 0.060249 96.9 59 - 123 Molybdenum 2.48538 0.0050 0.0030 2.50000 ND 99.4 30 - 169 Nickel 2.45128 0.0050 0.0046 2.50000 0.063740 95.5 60 - 125 Silver 2.61360 0.010 0.0093 2.50000 ND 111 58 - 136 Silver 2.76588 0.0030 0.0085 2.50000 ND 111 58 - 136 Thallium 2.20979 0.015 0.0085 2.50000 ND 88.4 68 - 11 M1 Vanadium 2.39027 0.0030 0.0022 2.50000 0.048991 93.7 63 - 131 Zine 2.96144 0.025 0.0057 2.50000 ND 116 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0088 2.50000 ND 111 63 - 131 1.68 20 Barium	Copper	2.74224	0.0090	0.0038	2.50000	0.063301	107	59 - 139			
Molybdenum		2.48162	0.0050	0.0047	2.50000	0.060249	96.9	59 - 123			
Selenium 2.61360 0.010 0.0093 2.50000 0.016808 104 55 - 136 Silver 2.76588 0.0030 0.0024 2.50000 ND 111 58 - 139 Thallium 2.20979 0.015 0.0085 2.50000 ND 88.4 68 - 11 M1 Vanadium 2.39027 0.0030 0.0022 2.50000 0.048991 93.7 63 - 131 4 68 - 11 M1 Matrix Spike Dup (B8K0162-MSDI) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Antimony 2.64728 0.010 0.0088 2.50000 ND 106 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0078 2.50000 ND 111 63 - 131 1.68 20 Barium 2.74744 0.0030 0.0026 2.50000 ND 91 66 - 126 1.45 20 Chamium 2.45353 0.0030 0.0024 2.50000	Molybdenum	2.48538	0.0050	0.0030	2.50000	ND	99.4	30 - 169			
Silver 2.76588 0.0030 0.0024 2.50000 ND 111 58 - 139 Thallium 2.20979 0.015 0.0085 2.50000 ND 88.4 68 - 11 M1 Vanadium 2.39027 0.0030 0.0022 2.50000 0.048991 93.7 63 - 131 M1 Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Analyzed: 11/6/2018 Analyzed: 11/6/2018 Analyzed: 11/6/2018 Analyzed: 11/6/2018 Analyzed: 11/6/2018 Analyzed: 11/6/2018 Analyzed: 11/6/2018 Analyzed: 11/6/2018	•	2.45128	0.0050	0.0046	2.50000		95.5	60 - 125			
Thallium 2.20979 0.015 0.0085 2.50000 ND 88.4 68 - 11 M1 Vanadium 2.39027 0.0030 0.0022 2.50000 0.048991 93.7 63 - 131 Zine 2.96144 0.025 0.0057 2.50000 0.479620 99.3 50 - 131 Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Antimony 2.64728 0.010 0.0088 2.50000 ND 110 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0078 2.50000 ND 111 63 - 131 1.68 20 Barium 2.74744 0.0030 0.0026 2.50000 0.267889 99.2 62 - 129 1.74 20 Beryllium 2.36136 0.0030 0.0016 2.50000 ND 94.5 66 - 126 1.45 20 Chromium 2.54553 0.0030 0.0024 2.50000 0.078103 98.7<	Selenium	2.61360	0.010	0.0093	2.50000	0.016808	104	55 - 136			
Thallium 2.20979 0.015 0.0085 2.50000 ND 88.4 68 - 11 M1 Vanadium 2.39027 0.0030 0.0022 2.50000 0.048991 93.7 63 - 131 Zine 2.96144 0.025 0.0057 2.50000 0.479620 99.3 50 - 131 Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Antimony 2.64728 0.010 0.0088 2.50000 ND 110 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0078 2.50000 ND 111 63 - 131 1.68 20 Barium 2.74744 0.0030 0.0026 2.50000 0.267889 99.2 62 - 129 1.74 20 Beryllium 2.36136 0.0030 0.0016 2.50000 ND 94.5 66 - 126 1.45 20 Chromium 2.54553 0.0030 0.0024 2.50000 0.078103 98.7<	Silver	2.76588	0.0030	0.0024	2.50000	ND	111	58 - 139			
Zinc 2.96144 0.025 0.0057 2.50000 0.479620 99.3 50 - 131 Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 AmJyzed: 11/6/2018 Antimony 2.64728 0.010 0.0088 2.50000 ND 106 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0078 2.50000 ND 111 63 - 131 1.68 20 Barium 2.74744 0.0030 0.0026 2.50000 ND 94.5 66 - 126 1.45 20 Beryllium 2.36136 0.0030 0.0016 2.50000 ND 94.5 66 - 126 1.45 20 Cadmium 2.45353 0.0030 0.0024 2.50000 0.05414 97.9 59 - 124 1.65 20 Chromium 2.54553 0.0030 0.0016 2.50000 0.078103 98.7 63 - 127 6.04 20 Cobalt 2.43872 0.0030 </td <td>Thallium</td> <td>2.20979</td> <td>0.015</td> <td>0.0085</td> <td>2.50000</td> <td></td> <td>88.4</td> <td>68 - 11</td> <td></td> <td></td> <td>M1</td>	Thallium	2.20979	0.015	0.0085	2.50000		88.4	68 - 11			M1
Matrix Spike Dup (B8K0162-MSD1) Source: 1804142-26 Prepared: 11/6/2018 Analyzed: 11/6/2018 Antimony 2.64728 0.010 0.0088 2.50000 ND 106 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0078 2.50000 ND 111 63 - 131 1.68 20 Barium 2.74744 0.0030 0.0026 2.50000 ND 94.5 66 - 126 1.45 20 Beryllium 2.36136 0.0030 0.0016 2.50000 ND 94.5 66 - 126 1.45 20 Cadmium 2.45353 0.0030 0.0024 2.50000 0.078103 98.7 63 - 127 6.04 20 Chromium 2.54553 0.0030 0.0016 2.50000 0.078103 98.7 63 - 127 6.04 20 Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 <td>Vanadium</td> <td>2.39027</td> <td>0.0030</td> <td>0.0022</td> <td>2.50000</td> <td>0.048991</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Vanadium	2.39027	0.0030	0.0022	2.50000	0.048991					
Antimony 2.64728 0.010 0.0088 2.50000 ND 106 66 - 127 1.98 20 Arsenic 2.77224 0.010 0.0078 2.50000 ND 111 63 - 131 1.68 20 Barium 2.74744 0.0030 0.0026 2.50000 0.267859 99.2 62 - 129 1.74 20 Beryllium 2.36136 0.0030 0.0016 2.50000 ND 94.5 66 - 126 1.45 20 Cadmium 2.45353 0.0030 0.0024 2.50000 0.005414 97.9 59 - 124 1.65 20 Chromium 2.54553 0.0030 0.0020 2.50000 0.078103 98.7 63 - 127 6.04 20 Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20	Zinc	2.96144	0.025	0.0057	2.50000	0.479620	99.3	50 - 131			
Arsenic 2.77224 0.010 0.0078 2.50000 ND 111 63 - 131 1.68 20 Barium 2.74744 0.0030 0.0026 2.50000 0.267859 99.2 62 - 129 1.74 20 Beryllium 2.36136 0.0030 0.0016 2.50000 ND 94.5 66 - 126 1.45 20 Cadmium 2.45353 0.0030 0.0024 2.50000 0.005414 97.9 59 - 124 1.65 20 Chromium 2.54553 0.0030 0.0020 2.50000 0.078103 98.7 63 - 127 6.04 20 Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 <	Matrix Spike Dup (B8K0162-M	ASD1)	S	ource: 18041	142-26	Prepared	: 11/6/2018	Analyzed: 11/6/	2018		
Barium 2.74744 0.0030 0.0026 2.50000 0.267859 99.2 62 - 129 1.74 20 Beryllium 2.36136 0.0030 0.0016 2.50000 ND 94.5 66 - 126 1.45 20 Cadmium 2.45353 0.0030 0.0024 2.50000 0.005414 97.9 59 - 124 1.65 20 Chromium 2.54553 0.0030 0.0020 2.50000 0.078103 98.7 63 - 127 6.04 20 Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20	Antimony	2.64728	0.010	0.0088	2.50000	ND	106	66 - 127	1.98	20	
Beryllium 2.36136 0.0030 0.0016 2.50000 ND 94.5 66 - 126 1.45 20 Cadmium 2.45353 0.0030 0.0024 2.50000 0.005414 97.9 59 - 124 1.65 20 Chromium 2.54553 0.0030 0.0020 2.50000 0.078103 98.7 63 - 127 6.04 20 Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20	Arsenic	2.77224	0.010	0.0078	2.50000	ND	111	63 - 131	1.68	20	
Cadmium 2.45353 0.0030 0.0024 2.50000 0.005414 97.9 59 - 124 1.65 20 Chromium 2.54553 0.0030 0.0020 2.50000 0.078103 98.7 63 - 127 6.04 20 Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20	Barium	2.74744	0.0030	0.0026	2.50000	0.267859	99.2	62 - 129	1.74	20	
Chromium 2.54553 0.0030 0.0020 2.50000 0.078103 98.7 63 - 127 6.04 20 Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20	Beryllium	2.36136	0.0030	0.0016	2.50000	ND	94.5	66 - 126	1.45	20	
Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20	Cadmium	2.45353	0.0030	0.0024	2.50000	0.005414	97.9	59 - 124	1.65	20	
Cobalt 2.43872 0.0030 0.0016 2.50000 0.019992 96.7 62 - 125 1.33 20 Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20	Chromium				2.50000	0.078103	98.7	63 - 127	6.04		
Copper 2.74144 0.0090 0.0038 2.50000 0.063301 107 59 - 139 0.0290 20 Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20					2.50000	0.019992					
Lead 2.50367 0.0050 0.0047 2.50000 0.060249 97.7 59 - 123 0.885 20 Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20	Copper		0.0090	0.0038	2.50000	0.063301	107	59 - 139	0.0290		
Molybdenum 2.49620 0.0050 0.0030 2.50000 ND 99.8 30 - 169 0.435 20 Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20		2.50367	0.0050	0.0047	2.50000	0.060249	97.7	59 - 123	0.885		
Nickel 2.53936 0.0050 0.0046 2.50000 0.063740 99.0 60 - 125 3.53 20	Molybdenum	2.49620		0.0030	2.50000	ND	99.8	30 - 169	0.435		
	-	2.53936	0.0050	0.0046	2.50000		99.0	60 - 125	3.53		
	Selenium	2.72640	0.010	0.0093	2.50000	0.016808	108	55 - 136			

Silver

Zinc

Thallium

Vanadium

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan StreetReport To:Ross SurrencyIrvine , CA 92614Reported:11/12/2018

0.0030

0.015

0.0030

0.025

2.82929

2.28639

2.47016

2.99019

0.0024

0.0085

0.0022

0.0057

Title 22 Metals by ICP-AES EPA 6010B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0162 - EPA 3010A_W	(continued)									
Matrix Spike Dup (B8K0162-MSD)	1) - Continued	So	ource: 18041	42-26	Prepared	d: 11/6/2018 A	nalyzed: 11/6/	/2018		

2.50000

2.50000

2.50000

2.50000

ND

ND

0.048991

0.479620

113

91.5

96.8

100

58 - 139

68 - 11

63 - 131

50 - 131

2.27

3.41

3.29

0.966

20

20

20

20

M1

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0153 - EPA 3050B MS	_S									
Blank (B8K0153-BLK1)					Prepared	: 11/5/2018	Analyzed: 11/7/	2018		
Arsenic	ND	0.25	0.01							
LCS (B8K0153-BS1)					Prepared	: 11/5/2018	Analyzed: 11/7/	2018		
Arsenic	4.04096	0.25	0.01	5.00000		80.8	70 - 130			
Matrix Spike (B8K0153-MS1)		Se	ource: 18041	42-13	Prepared	: 11/5/2018	Analyzed: 11/7/	2018		
Arsenic	10.2347	1.0	0.04	5.00000	6.18715	81.0	75 - 125			
Matrix Spike Dup (B8K0153-MSD1))	Se	ource: 18041	42-13	Prepared	: 11/5/2018	Analyzed: 11/7/	2018		
Arsenic	10.9131	1.0	0.04	5.00000	6.18715	94.5	75 - 125	6.42	20	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B8K0153 - EPA 3050B MS_S

Post Spike (B8K0153-PS1) Source: 1804142-13 Prepared: 11/5/2018 Analyzed: 11/7/2018

Arsenic 11.7549 10.0000 3.09357 86.6 75 - 125

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Total Metals by ICP-MS EPA 6020 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0155 - EPA 3010A N	4S_W									
Blank (B8K0155-BLK1)					Prepared	: 11/5/2018	Analyzed: 11/8/	2018		
Arsenic	ND	1.0	0.39							
LCS (B8K0155-BS1)					Prepared	: 11/5/2018	Analyzed: 11/8/	2018		
Arsenic	9.72817	1.0	0.39	10.0000		97.3	85 - 115			
Matrix Spike (B8K0155-MS1)		So	ource: 1804	142-25	Prepared: 11/5/2018 Analyzed: 11/8/2018					
Arsenic	9.39188	1.0	0.39	10.0000	ND	93.9	75 - 125			
Matrix Spike Dup (B8K0155-MSI	D1)	Se	ource: 1804	142-25	Prepared	: 11/5/2018	Analyzed: 11/8/	2018		
Arsenic	9.02431	1.0	0.39	10.0000	ND	90.2	75 - 125	3.99	20	
Post Spike (B8K0155-PS1)		Se	ource: 1804	142-25	Prepared: 11/5/2018 Analyzed: 11/8/2018					
Arsenic	4.77802			5.00000	0.107490	93.4	75 - 125			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Mercury by AA (Cold Vapor) EPA 7470A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0164 - EPA 245.1/74	470_W									
Blank (B8K0164-BLK1)					Prepared:	: 11/6/2018	Analyzed: 11/6/	2018		
Mercury	ND	0.20	0.03							
LCS (B8K0164-BS1)					Prepared:	: 11/6/2018	Analyzed: 11/6/	2018		
Mercury	10.1460	0.20	0.03	10.0000		101	80 - 120			
Duplicate (B8K0164-DUP1)		s	Source: 1804142-26			: 11/6/2018	Analyzed: 11/6/	2018		
Mercury	0.046408	0.20	0.03		ND			NR	20	
Matrix Spike (B8K0164-MS1)		s	ource: 18041	142-26	Prepared:	: 11/6/2018	Analyzed: 11/6/	2018		
Mercury	9.32395	0.20	0.03	10.0000	ND	93.2	70 - 130			
Matrix Spike Dup (B8K0164-MS	D1)	s	ource: 18041	142-26	Prepared:	: 11/6/2018	Analyzed: 11/6/	2018		
Mercury	9.25191	0.20	0.03	10.0000	ND	92.5	70 - 130	0.776	20	
Post Spike (B8K0164-PS1)		s	ource: 1804	142-26	Prepared: 11/6/2018 Analyzed: 11/6/2018					
Mercury	4.70325			5.00000	0.019472	93.7	85 - 115			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0118 - GCVOA_W										
Blank (B8K0118-BLK1)					Prepare	d: 11/5/2018 A	Analyzed: 11/5/	2018		
Gasoline Range Organics	ND	0.20	0.05							
Surrogate: 4-Bromofluorobenzene	0.09840			0.100000		98.4	70 - 130			
LCS (B8K0118-BS1)					Prepare	d: 11/5/2018 A	Analyzed: 11/5/	2018		
Gasoline Range Organics	0.914000	0.20	0.05	1.00000		91.4	70 - 130			
Surrogate: 4-Bromofluorobenzene	0.1021			0.100000		102	70 - 130		_	
LCS Dup (B8K0118-BSD1)					Prepare	d: 11/5/2018 A	Analyzed: 11/5/	2018		
Gasoline Range Organics	0.897000	0.20	0.05	1.00000		89.7	70 - 130	1.88	20	
Surrogate: 4-Bromofluorobenzene	0.09330			0.100000		93.3	70 - 130		•	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \ , CA \ 92614 \\ Report To : Ross \ Surrency \\ Reported : 11/12/2018$

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0252 - GCSEMI DI	RO LL S									
batta bortozaz Geseni_bi	KO_LL_S									
Blank (B8K0252-BLK1)					Prepared	1: 11/7/2018	Analyzed: 11/7/	2018		
DRO	ND	1.0	1.0							
ORO	ND	1.0	1.0							
Surrogate: p-Terphenyl	2.865			2.66667		107	34 - 158			
LCS (B8K0252-BS1)					Prepared	l: 11/7/2018	Analyzed: 11/7/	2018		
DRO	31.6170	1.0	1.0	33.3333		94.9	47 - 152			
Surrogate: p-Terphenyl	2.542			2.66667		95.3	34 - 158			
Matrix Spike (B8K0252-MS1)		s	ource: 18041	42-10	Prepared	l: 11/7/2018	Analyzed: 11/7/	2018		
DRO	30.2057	1.0	1.0	33.3333	9.02267	63.5	34 - 130			
Surrogate: p-Terphenyl	2.349			2.66667		88.1	34 - 158			
Matrix Spike Dup (B8K0252-MSI	D1)	s	ource: 18041	42-10	Prepared	l: 11/7/2018	Analyzed: 11/7/	2018		
DRO	30.4077	1.0	1.0	33.3333	9.02267	64.2	34 - 130	0.667	20	
Surrogate: p-Terphenyl	2.071			2.66667		77.6	34 - 158			

Leighton Consulting, Inc.

Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/L)	(mg/L)	(mg/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0283 - GCSEMI_DI	RO_W									
Blank (B8K0283-BLK1)					Prepare	d: 11/8/2018 A	Analyzed: 11/8/	2018		
DRO	ND	0.05	0.05							
ORO	ND	0.05	0.05							
Surrogate: p-Terphenyl	0.1046			8.00000E-2		131	32 - 169			
LCS (B8K0283-BS1)					Prepare	d: 11/8/2018	Analyzed: 11/8/	2018		
DRO	1.01514	0.05	0.05	1.00000		102	45 - 161			
Surrogate: p-Terphenyl	0.09261	_	_	8.00000E-2	_	116	32 - 169			
LCS Dup (B8K0283-BSD1)					Prepare	d: 11/8/2018	Analyzed: 11/8/	2018		
DRO	1.05160	0.05	0.05	1.00000		105	45 - 161	3.53	20	
Surrogate: p-Terphenyl	0.08563			8.00000E-2		107	32 - 169			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Organochlorine Pesticides by EPA 8081 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD		1
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Batch B8K0214 - GCSEMI_PCB/PEST_S	
Blank (B8K0214-BLK1)	Prepared: 11/6/2018 Analyzed: 11/7/2018

Blank (B8K0214-BLK1)			
4,4´-DDD	ND	2.0	0.07
4,4'-DDD [2C]	ND	2.0	0.07
4,4'-DDE	ND	2.0	0.05
4,4'-DDE [2C]	ND	2.0	0.05
4,4'-DDT	ND	2.0	0.10
4,4'-DDT [2C]	ND	2.0	0.10
Aldrin	ND	1.0	0.04
Aldrin [2C]	ND	1.0	0.04
alpha-BHC	ND	1.0	0.11
alpha-BHC [2C]	ND	1.0	0.11
alpha-Chlordane	ND	1.0	0.12
alpha-Chlordane [2C]	ND	1.0	0.12
beta-BHC	ND	1.0	0.06
beta-BHC [2C]	ND	1.0	0.06
Chlordane	ND	8.5	1.1
Chlordane [2C]	ND	8.5	1.1
delta-BHC	ND	1.0	0.03
delta-BHC [2C]	ND	1.0	0.03
Dieldrin	ND	2.0	0.13
Dieldrin [2C]	ND	2.0	0.13
Endosulfan I	ND	1.0	0.10
Endosulfan I [2C]	ND	1.0	0.10
Endosulfan II	ND	2.0	0.03
Endosulfan II [2C]	ND	2.0	0.03
Endosulfan sulfate	ND	2.0	0.08
Endosulfan Sulfate [2C]	ND	2.0	0.08
Endrin	ND	2.0	0.04
Endrin [2C]	ND	2.0	0.04
Endrin aldehyde	ND	2.0	0.31
Endrin aldehyde [2C]	ND	2.0	0.31
Endrin ketone	ND	2.0	0.13
Endrin ketone [2C]	ND	2.0	0.13
gamma-BHC	ND	1.0	0.10
gamma-BHC [2C]	ND	1.0	0.10
gamma-Chlordane	ND	1.0	0.07
gamma-Chlordane [2C]	ND	1.0	0.07
Heptachlor	ND	1.0	0.05
Heptachlor [2C]	ND	1.0	0.05
Heptachlor epoxide	ND	1.0	0.09
Heptachlor epoxide [2C]	ND	1.0	0.09
Methoxychlor	ND	5.0	0.18

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	
D / I DOMOA14 CCCCCAT TO	D/DECCE C /										
Batch B8K0214 - GCSEMI_PCI	B/PEST_S (co	ontinued)									
Blank (B8K0214-BLK1) - Continue	d				Prepared: 11/6/2018 Analyzed: 11/7/2018						
Methoxychlor [2C]	ND	5.0	0.18								
Toxaphene	ND	50	4.7								
Coxaphene [2C]	ND	50	4.7								
Surrogate: Decachlorobiphenyl	10.91			16.6667		65.5	43 - 84				
Surrogate: Decachlorobiphenyl [7.648			16.6667		45.9	43 - 84				
Surrogate: Tetrachloro-m-xylene	12.41			16.6667		74.5	54 - 118				
Surrogate: Tetrachloro-m-xylene	12.12			16.6667		72.7	54 - 118				
LCS (B8K0214-BS1)					Prepared	d: 11/6/2018 A	Analyzed: 11/7/	2018			
,4′-DDD	13.2078	2.0	0.07	16.6667		79.2	73 - 110				
,4′-DDD [2C]	12.5178	2.0	0.07	16.6667		75.1	73 - 110				
,4′-DDE	12.2787	2.0	0.05	16.6667		73.7	71 - 99				
,4′-DDE [2C]	12.2933	2.0	0.05	16.6667		73.8	71 - 99				
,4′-DDT	10.0513	2.0	0.10	16.6667		60.3	51 - 106				
,4'-DDT [2C]	13.1837	2.0	0.10	16.6667		79.1	51 - 106				
Aldrin	11.8378	1.0	0.04	16.6667		71.0	67 - 95				
lldrin [2C]	11.8147	1.0	0.04	16.6667		70.9	67 - 95				
lpha-BHC	12.2463	1.0	0.11	16.6667		73.5	67 - 94				
lpha-BHC [2C]	12.0812	1.0	0.11	16.6667		72.5	67 - 94				
lpha-Chlordane	12.9498	1.0	0.12	16.6667		77.7	69 - 99				
lpha-Chlordane [2C]	11.5217	1.0	0.12	16.6667		69.1	69 - 99				
eta-BHC	12.1667	1.0	0.06	16.6667		73.0	67 - 99				
eta-BHC [2C]	12.2102	1.0	0.06	16.6667		73.3	67 - 99				
elta-BHC	12.7725	1.0	0.03	16.6667		76.6	73 - 103				
elta-BHC [2C]	13.7638	1.0	0.03	16.6667		82.6	73 - 103				
Dieldrin	12.1648	2.0	0.13	16.6667		73.0	65 - 93				
Dieldrin [2C]	11.7352	2.0	0.13	16.6667		70.4	65 - 93				
indosulfan I	11.8760	1.0	0.10	16.6667		71.3	65 - 91				
indosulfan I [2C]	10.8453	1.0	0.10	16.6667		65.1	65 - 91				
ndosulfan II	12.6025	2.0	0.03	16.6667		75.6	65 - 102				
indosulfan II [2C]	12.6262	2.0	0.03	16.6667		75.8	65 - 102				
indosulfan sulfate	11.7903	2.0	0.08	16.6667		70.7	64 - 106				
ndosulfan Sulfate [2C]	13.0043	2.0	0.08	16.6667		78.0	64 - 106				
ndrin	13.1177	2.0	0.04	16.6667		78.7	64 - 111				
ndrin [2C]	13.6922	2.0	0.04	16.6667		82.2	64 - 111				
ndrin aldehyde	11.6285	2.0	0.31	16.6667		69.8	64 - 109				
Indrin aldehyde [2C]	9.99083	2.0	0.31	16.6667		59.9	64 - 109			L4	
Indrin ketone	10.9135	2.0	0.13	16.6667		65.5	57 - 101				
ndrin ketone [2C]	12.8603	2.0	0.13	16.6667		77.2	57 - 101				
amma-BHC	11.6458	1.0	0.10	16.6667		69.9	65 - 96				
amma-BHC [2C]	12.2977	1.0	0.10	16.6667		73.8	65 - 96				

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D.4.L DOZO214 CCCEMI DCI	D/DECT C (
Batch B8K0214 - GCSEMI_PCF	3/PEST_S (co	ontinued)								
LCS (B8K0214-BS1) - Continued					Prepared	: 11/6/2018 A	Analyzed: 11/7/	2018		
amma-Chlordane	12.7037	1.0	0.07	16.6667		76.2	65 - 113			
gamma-Chlordane [2C]	10.8377	1.0	0.07	16.6667		65.0	65 - 113			
Ieptachlor	11.8960	1.0	0.05	16.6667		71.4	61 - 96			
Heptachlor [2C]	12.8760	1.0	0.05	16.6667		77.3	61 - 96			
Ieptachlor epoxide	11.5233	1.0	0.09	16.6667		69.1	64 - 89			
Ieptachlor epoxide [2C]	11.4838	1.0	0.09	16.6667		68.9	64 - 89			
Methoxychlor	15.9818	5.0	0.18	16.6667		95.9	67 - 109			
1ethoxychlor [2C]	14.8397	5.0	0.18	16.6667		89.0	67 - 109			
Surrogate: Decachlorobiphenyl	10.90			16.6667		65.4	43 - 84			
Surrogate: Decachlorobiphenyl [7.761			16.6667		46.6	43 - 84			
Surrogate: Tetrachloro-m-xylene	11.68			16.6667		70.1	54 - 118			
Surrogate: Tetrachloro-m-xylene	10.80			16.6667		64.8	54 - 118			
Matrix Spike (B8K0214-MS1)		So	ource: 18041	42-01	Prepared	: 11/6/2018 A	Analyzed: 11/7/	2018		
,4′-DDD	11.4027	2.0	0.07	16.6667	ND	68.4	73 - 110			M2
4'-DDD [2C]	11.5903	2.0	0.07	16.6667	ND	69.5	73 - 110			M2
.4'-DDE	11.6920	2.0	0.05	16.6667	ND	70.2	71 - 99			M2
,4'-DDE [2C]	10.3313	2.0	0.05	16.6667	ND	62.0	71 - 99			M2
,4′-DDT	9.90100	2.0	0.10	16.6667	ND	59.4	51 - 106			
,4'-DDT [2C]	11.8065	2.0	0.10	16.6667	ND	70.8	51 - 106			
Aldrin	10.8832	1.0	0.04	16.6667	ND	65.3	67 - 95			M2
Aldrin [2C]	9.57517	1.0	0.04	16.6667	ND	57.5	67 - 95			M2
lpha-BHC	10.2487	1.0	0.11	16.6667	ND	61.5	67 - 94			M2
lpha-BHC [2C]	10.1420	1.0	0.11	16.6667	ND	60.9	67 - 94			M2
lpha-Chlordane	23.5563	1.0	0.12	16.6667	16.5548	42.0	69 - 99			M2
lpha-Chlordane [2C]	27.7352	1.0	0.12	16.6667	10.4910	103	69 - 99			M2
eta-BHC	10.6245	1.0	0.06	16.6667	ND	63.7	67 - 99			M2
eta-BHC [2C]	10.1767	1.0	0.06	16.6667	ND	61.1	67 - 99			M2
elta-BHC	10.9955	1.0	0.03	16.6667	ND	66.0	73 - 103			M2
elta-BHC [2C]	11.5483	1.0	0.03	16.6667	ND	69.3	73 - 103			M2
Dieldrin	39.8647	2.0	0.13	16.6667	37.2520	15.7	65 - 93			M2
Dieldrin [2C]	41.0448	2.0	0.13	16.6667	39.1455	11.4	65 - 93			M2
indosulfan I	10.7538	1.0	0.10	16.6667	ND	64.5	65 - 91			M2
ndosulfan I [2C]	10.0263	1.0	0.10	16.6667	ND	60.2	65 - 91			M2
ndosulfan II	14.6685	2.0	0.03	16.6667	ND	88.0	65 - 102			
indosulfan II [2C]	11.0807	2.0	0.03	16.6667	ND	66.5	65 - 102			
indosulfan sulfate	11.2052	2.0	0.08	16.6667	ND	67.2	64 - 106			
ndosulfan Sulfate [2C]	11.5332	2.0	0.08	16.6667	ND	69.2	64 - 106			
indrin	12.3597	2.0	0.04	16.6667	ND	74.2	64 - 111			
ndrin [2C]	13.2627	2.0	0.04	16.6667	ND	79.6	64 - 111			
ndrin aldehyde	14.8087	2.0	0.31	16.6667	ND	88.9	64 - 109			

Endosulfan II [2C]

10.4925

2.0

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0214 - GCSEMI_PC	B/PEST_S (co	ontinued)								
Matrix Spike (B8K0214-MS1) - Co	ntinued	Se	ource: 18041	42-01	Prepared	: 11/6/2018	Analyzed: 11/7/	2018		
Endrin aldehyde [2C]	8.47417	2.0	0.31	16.6667	ND	50.8	64 - 109			M2
Endrin ketone	9.56000	2.0	0.13	16.6667	ND	57.4	57 - 101			
Endrin ketone [2C]	12.1002	2.0	0.13	16.6667	ND	72.6	57 - 101			
amma-BHC	10.3288	1.0	0.10	16.6667	ND	62.0	65 - 96			M2
amma-BHC [2C]	10.3108	1.0	0.10	16.6667	ND	61.9	65 - 96			M2
amma-Chlordane	15.7758	1.0	0.07	16.6667	7.07933	52.2	65 - 113			M2
amma-Chlordane [2C]	12.6165	1.0	0.07	16.6667	4.82000	46.8	65 - 113			M2
Ieptachlor	10.1548	1.0	0.05	16.6667	ND	60.9	61 - 96			M2
Heptachlor [2C]	9.72400	1.0	0.05	16.6667	ND	58.3	61 - 96			M2
Ieptachlor epoxide	14.9172	1.0	0.09	16.6667	5.00383	59.5	64 - 89			M2
Heptachlor epoxide [2C]	14.7588	1.0	0.09	16.6667	5.80183	53.7	64 - 89			M2
Methoxychlor	16.5910	5.0	0.18	16.6667	ND	99.5	67 - 109			
Methoxychlor [2C]	17.3082	5.0	0.18	16.6667	ND	104	67 - 109			
Surrogate: Decachlorobiphenyl	10.32			16.6667		61.9	43 - 84			
Surrogate: Decachlorobiphenyl [8.196			16.6667		49.2	43 - 84			
Surrogate: Tetrachloro-m-xylene	9.634			16.6667		57.8	54 - 118			
Surrogate: Tetrachloro-m-xylene	8.468			16.6667		50.8	54 - 118			S10
Matrix Spike Dup (B8K0214-MSD	1)	Se	ource: 18041	42-01	Prepared	: 11/6/2018	Analyzed: 11/7/2	2018		
1,4′-DDD	10.5057	2.0	0.07	16.6667	ND	63.0	73 - 110	8.19	20	M2
,4′-DDD [2C]	10.8287	2.0	0.07	16.6667	ND	65.0	73 - 110	6.79	20	M2
,4′-DDE	11.0265	2.0	0.05	16.6667	ND	66.2	71 - 99	5.86	20	M2
,4′-DDE [2C]	9.90933	2.0	0.05	16.6667	ND	59.5	71 - 99	4.17	20	M2
,4′-DDT	8.73050	2.0	0.10	16.6667	ND	52.4	51 - 106	12.6	20	
,4'-DDT [2C]	11.0002	2.0	0.10	16.6667	ND	66.0	51 - 106	7.07	20	
Aldrin	10.5060	1.0	0.04	16.6667	ND	63.0	67 - 95	3.53	20	M2
Aldrin [2C]	9.34800	1.0	0.04	16.6667	ND	56.1	67 - 95	2.40	20	M2
lpha-BHC	9.94167	1.0	0.11	16.6667	ND	59.6	67 - 94	3.04	20	M2
lpha-BHC [2C]	10.1798	1.0	0.11	16.6667	ND	61.1	67 - 94	0.372	20	M2
lpha-Chlordane	22.3310	1.0	0.12	16.6667	16.5548	34.7	69 - 99	5.34	20	M2
lpha-Chlordane [2C]	26.6152	1.0	0.12	16.6667	10.4910	96.7	69 - 99	4.12	20	
peta-BHC	10.2235	1.0	0.06	16.6667	ND	61.3	67 - 99	3.85	20	M2
eta-BHC [2C]	10.3275	1.0	0.06	16.6667	ND	62.0	67 - 99	1.47	20	M2
elta-BHC	10.3783	1.0	0.03	16.6667	ND	62.3	73 - 103	5.78	20	M2
elta-BHC [2C]	11.2855	1.0	0.03	16.6667	ND	67.7	73 - 103	2.30	20	M2
Dieldrin	38.1355	2.0	0.03	16.6667	37.2520	5.30	65 - 93	4.43	20	M2
Dieldrin [2C]	39.2858	2.0	0.13	16.6667	39.1455	0.842	65 - 93	4.43	20	M2
ndosulfan I	10.2143	1.0	0.13	16.6667	39.1433 ND	61.3	65 - 91	5.15	20	M2
ndosulfan I [2C]	9.83050		0.10	16.6667	ND ND	59.0	65 - 91	1.97	20	M2 M2
		1.0								
Endosulfan II	11.3945	2.0	0.03	16.6667	ND	68.4	65 - 102	25.1	20	R3

M2

20

16.6667

ND

63.0

65 - 102

5.45

0.03

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan StreetReport To:Ross SurrencyIrvine , CA 92614Reported:11/12/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0214 - GCSEMI_PC	CB/PEST_S (cor	itinued)								
Matrix Spike Dup (B8K0214-MSI	D1) - Continued	So	ource: 18041	42-01	Prepared	: 11/6/2018	Analyzed: 11/7/	2018		
Endosulfan sulfate	11.4203	2.0	0.08	16.6667	ND	68.5	64 - 106	1.90	20	
Endosulfan Sulfate [2C]	10.7503	2.0	0.08	16.6667	ND	64.5	64 - 106	7.03	20	
Endrin	11.8027	2.0	0.04	16.6667	ND	70.8	64 - 111	4.61	20	
Endrin [2C]	12.4517	2.0	0.04	16.6667	ND	74.7	64 - 111	6.31	20	
Endrin aldehyde	11.2545	2.0	0.31	16.6667	ND	67.5	64 - 109	27.3	20	R3
Endrin aldehyde [2C]	8.09367	2.0	0.31	16.6667	ND	48.6	64 - 109	4.59	20	M2
Endrin ketone	9.88133	2.0	0.13	16.6667	ND	59.3	57 - 101	3.31	20	
Endrin ketone [2C]	11.4990	2.0	0.13	16.6667	ND	69.0	57 - 101	5.09	20	
gamma-BHC	9.93250	1.0	0.10	16.6667	ND	59.6	65 - 96	3.91	20	M2
gamma-BHC [2C]	10.2817	1.0	0.10	16.6667	ND	61.7	65 - 96	0.283	20	M2
gamma-Chlordane	14.9330	1.0	0.07	16.6667	7.07933	47.1	65 - 113	5.49	20	M2
gamma-Chlordane [2C]	12.3748	1.0	0.07	16.6667	4.82000	45.3	65 - 113	1.93	20	M2
Heptachlor	9.69083	1.0	0.05	16.6667	ND	58.1	61 - 96	4.68	20	M2
Heptachlor [2C]	9.98550	1.0	0.05	16.6667	ND	59.9	61 - 96	2.65	20	M2
Heptachlor epoxide	14.1743	1.0	0.09	16.6667	5.00383	55.0	64 - 89	5.11	20	M2
Heptachlor epoxide [2C]	14.3840	1.0	0.09	16.6667	5.80183	51.5	64 - 89	2.57	20	M2
Methoxychlor	17.5865	5.0	0.18	16.6667	ND	106	67 - 109	5.83	20	
Methoxychlor [2C]	16.2073	5.0	0.18	16.6667	ND	97.2	67 - 109	6.57	20	

Surrogate: Decachlorobiphenyl	9.806	16.6667	58.8	43 - 84	
Surrogate: Decachlorobiphenyl [7.689	16.6667	46.1	43 - 84	
Surrogate: Tetrachloro-m-xylene	9.349	16.6667	56.1	54 - 118	
Surrogate: Tetrachloro-m-xylene	8.743	16.6667	52.5	54 - 118	S10

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan StreetReport To:Ross SurrencyIrvine, CA 92614Reported:11/12/2018

Organochlorine Pesticides by EPA 8081 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B8K0268 - GCSEMI_PCB/PEST_W	

Blank (B8K0268-BLK2)			
4,4'-DDD	ND	0.05	0.006
4,4'-DDD [2C]	ND	0.05	0.006
4,4'-DDE	ND	0.05	0.005
4,4'-DDE [2C]	ND	0.05	0.005
4,4'-DDT	ND	0.05	0.01
4,4'-DDT [2C]	ND	0.05	0.01
Aldrin	ND	0.02	0.002
Aldrin [2C]	ND	0.02	0.002
alpha-BHC	ND	0.02	0.002
alpha-BHC [2C]	ND	0.02	0.002
alpha-Chlordane	ND	0.02	0.003
alpha-Chlordane [2C]	ND	0.02	0.003
beta-BHC	ND	0.02	0.002
beta-BHC [2C]	ND	0.02	0.002
Chlordane	ND	0.25	0.03
Chlordane [2C]	ND	0.25	0.03
delta-BHC	ND	0.02	0.002
delta-BHC [2C]	ND	0.02	0.002
Dieldrin	ND	0.05	0.002
Dieldrin [2C]	ND	0.05	0.002
Endosulfan I	ND	0.02	0.005
Endosulfan I [2C]	ND	0.02	0.005
Endosulfan II	ND	0.05	0.009
Endosulfan II [2C]	ND	0.05	0.009
Endosulfan sulfate	ND	0.05	0.01
Endosulfan Sulfate [2C]	ND	0.05	0.01
Endrin	ND	0.05	0.005
Endrin [2C]	ND	0.05	0.005
Endrin aldehyde	ND	0.05	0.003
Endrin aldehyde [2C]	ND	0.05	0.003
Endrin ketone	ND	0.05	0.003
Endrin ketone [2C]	ND	0.05	0.003
gamma-BHC	ND	0.02	0.002
gamma-BHC [2C]	ND	0.02	0.002
gamma-Chlordane	ND	0.02	0.002
gamma-Chlordane [2C]	ND	0.02	0.002
Heptachlor	ND	0.02	0.002
Heptachlor [2C]	ND	0.02	0.002
Heptachlor epoxide	ND	0.02	0.002
Heptachlor epoxide [2C]	ND	0.02	0.002
Methoxychlor	ND	0.25	0.008

Prepared: 11/7/2018 Analyzed: 11/7/2018

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

MDL

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

PQL

Result

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

Spike

Source

	Result	1 QL	MDL	Брікс	Bource		70 ICCC		Iu D	
nalyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
o-4-l DOMOZO CCCEMI DO	D/DECT W/	4' 1\								
Batch B8K0268 - GCSEMI_PCI		ontinued)								
Blank (B8K0268-BLK2) - Continue	ed				Prepared	d: 11/7/2018 A	Analyzed: 11/7/	2018		
ethoxychlor [2C]	ND	0.25	0.008							
oxaphene	ND	2.5	0.23							
oxaphene [2C]	ND	2.5	0.23							
urrogate: Decachlorobiphenyl	0.3216			0.500000		64.3	8 - 128			
urrogate: Decachlorobiphenyl [0.2783			0.500000		55.7	8 - 128			
urrogate: Tetrachloro-m-xylene	0.3344			0.500000		66.9	32 - 126			
urrogate: Tetrachloro-m-xylene	0.3240			0.500000		64.8	32 - 126			
LCS (B8K0268-BS2)					Prepared	d: 11/7/2018	Analyzed: 11/7/	2018		
4'-DDD	0.367200	0.05	0.006	0.500000		73.4	56 - 126			
4′-DDD [2C]	0.377050	0.05	0.006	0.500000		75.4	56 - 126			
4′-DDE	0.399190	0.05	0.005	0.500000		79.8	53 - 127			
4′-DDE [2C]	0.340125	0.05	0.005	0.500000		68.0	53 - 127			
4′-DDT	0.352255	0.05	0.01	0.500000		70.5	27 - 134			
4′-DDT [2C]	0.371490	0.05	0.01	0.500000		74.3	27 - 134			
ldrin	0.389155	0.02	0.002	0.500000		77.8	53 - 123			
ldrin [2C]	0.346750	0.02	0.002	0.500000		69.4	53 - 123			
pha-BHC	0.377190	0.02	0.002	0.500000		75.4	58 - 120			
pha-BHC [2C]	0.356465	0.02	0.002	0.500000		71.3	58 - 120			
pha-Chlordane	0.389870	0.02	0.003	0.500000		78.0	55 - 123			
pha-Chlordane [2C]	0.341975	0.02	0.003	0.500000		68.4	55 - 123			
eta-BHC	0.363460	0.02	0.002	0.500000		72.7	53 - 116			
eta-BHC [2C]	0.356845	0.02	0.002	0.500000		71.4	53 - 116			
elta-BHC	0.381600	0.02	0.002	0.500000		76.3	27 - 136			
elta-BHC [2C]	0.401340	0.02	0.002	0.500000		80.3	27 - 136			
ieldrin	0.365985	0.05	0.002	0.500000		73.2	55 - 114			
ieldrin [2C]	0.339920	0.05	0.002	0.500000		68.0	55 - 114			
ndosulfan I	0.368815	0.02	0.005	0.500000		73.8	52 - 117			
ndosulfan I [2C]	0.341110	0.02	0.005	0.500000		68.2	52 - 117			
ndosulfan II	0.379510	0.05	0.009	0.500000		75.9	53 - 128			
ndosulfan II [2C]	0.377770	0.05	0.009	0.500000		75.6	53 - 128			
ndosulfan sulfate	0.367225	0.05	0.01	0.500000		73.4	49 - 122			
ndosulfan Sulfate [2C]	0.378405	0.05	0.01	0.500000		75.7	49 - 122			
ndrin	0.391890	0.05	0.005	0.500000		78.4	59 - 123			
ndrin [2C]	0.397255	0.05	0.005	0.500000		79.5	59 - 123			
ndrin aldehyde	0.380195	0.05	0.003	0.500000		76.0	49 - 140			
ndrin aldehyde [2C]	0.381480	0.05	0.003	0.500000		76.3	49 - 140			
ndrin ketone	0.338170	0.05	0.003	0.500000		67.6	47 - 121			
ndrin ketone [2C]	0.379065	0.05	0.003	0.500000		75.8	47 - 121			
ımma-BHC	0.373003	0.03	0.003	0.500000		72.3	57 - 116			
mma-BHC [2C]	0.357430	0.02	0.002	0.500000		71.5	57 - 116 57 - 116			

RPD

% Rec

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
n	n mnor									
Batch B8K0268 - GCSEMI_PC	B/PEST_W (c	ontinued)								
LCS (B8K0268-BS2) - Continued					Prepare	d: 11/7/2018 A	Analyzed: 11/7/	2018		
gamma-Chlordane	0.380955	0.02	0.002	0.500000		76.2	53 - 120			
gamma-Chlordane [2C]	0.343115	0.02	0.002	0.500000		68.6	53 - 120			
Heptachlor	0.378140	0.02	0.002	0.500000		75.6	55 - 121			
Heptachlor [2C]	0.392690	0.02	0.002	0.500000		78.5	55 - 121			
Heptachlor epoxide	0.376315	0.02	0.002	0.500000		75.3	54 - 113			
Heptachlor epoxide [2C]	0.348940	0.02	0.002	0.500000		69.8	54 - 113			
Methoxychlor	0.418290	0.25	0.008	0.500000		83.7	47 - 135			
Methoxychlor [2C]	0.423645	0.25	0.008	0.500000		84.7	47 - 135			
Surrogate: Decachlorobiphenyl	0.3138			0.500000		62.8	8 - 128			
Surrogate: Decachlorobiphenyl [0.2922			0.500000		58.4	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.3480			0.500000		69.6	32 - 126			
Surrogate: Tetrachloro-m-xylene	0.3367			0.500000		67.3	32 - 126			
LCS Dup (B8K0268-BSD2)					Prepare	d: 11/7/2018 A	Analyzed: 11/7/	2018		
4,4'-DDD	0.373630	0.05	0.006	0.500000		74.7	56 - 126	1.74	20	
4,4'-DDD [2C]	0.385205	0.05	0.006	0.500000		77.0	56 - 126	2.14	20	
4,4'-DDE	0.406060	0.05	0.005	0.500000		81.2	53 - 127	1.71	20	
4,4'-DDE [2C]	0.347825	0.05	0.005	0.500000		69.6	53 - 127	2.24	20	
4,4'-DDT	0.357760	0.05	0.01	0.500000		71.6	27 - 134	1.55	20	
4,4'-DDT [2C]	0.378405	0.05	0.01	0.500000		75.7	27 - 134	1.84	20	
Aldrin	0.396575	0.02	0.002	0.500000		79.3	53 - 123	1.89	20	
Aldrin [2C]	0.355510	0.02	0.002	0.500000		71.1	53 - 123	2.49	20	
alpha-BHC	0.385070	0.02	0.002	0.500000		77.0	58 - 120	2.07	20	
alpha-BHC [2C]	0.365810	0.02	0.002	0.500000		73.2	58 - 120	2.59	20	
alpha-Chlordane	0.397340	0.02	0.003	0.500000		79.5	55 - 123	1.90	20	
alpha-Chlordane [2C]	0.350715	0.02	0.003	0.500000		70.1	55 - 123	2.52	20	
beta-BHC	0.370245	0.02	0.002	0.500000		74.0	53 - 116	1.85	20	
beta-BHC [2C]	0.364840	0.02	0.002	0.500000		73.0	53 - 116	2.22	20	
delta-BHC	0.391250	0.02	0.002	0.500000		78.2	27 - 136	2.50	20	
delta-BHC [2C]	0.411050	0.02	0.002	0.500000		82.2	27 - 136	2.39	20	
Dieldrin	0.371490	0.05	0.002	0.500000		74.3	55 - 114	1.49	20	
Dieldrin [2C]	0.347390	0.05	0.002	0.500000		69.5	55 - 114	2.17	20	
Endosulfan I	0.373115	0.02	0.005	0.500000		74.6	52 - 117	1.16	20	
Endosulfan I [2C]	0.347670	0.02	0.005	0.500000		69.5	52 - 117	1.90	20	
Endosulfan II	0.385340	0.05	0.009	0.500000		77.1	53 - 128	1.52	20	
Endosulfan II [2C]	0.385420	0.05	0.009	0.500000		77.1	53 - 128	2.00	20	
Endosulfan sulfate	0.373205	0.05	0.01	0.500000		74.6	49 - 122	1.62	20	
Endosulfan Sulfate [2C]	0.386930	0.05	0.01	0.500000		77.4	49 - 122	2.23	20	
Endrin	0.395400	0.05	0.005	0.500000		79.1	59 - 123	0.892	20	
Endrin [2C]	0.403710	0.05	0.005	0.500000		80.7	59 - 123	1.61	20	
Endrin aldehyde	0.386735	0.05	0.003	0.500000		77.3	49 - 140	1.71	20	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0268 - GCSEMI_PC	B/PEST_W (c	ontinued)								
LCS Dup (B8K0268-BSD2) - Conti	inued				Prepared	d: 11/7/2018 A	Analyzed: 11/7/	2018		
Endrin aldehyde [2C]	0.389340	0.05	0.003	0.500000		77.9	49 - 140	2.04	20	
Endrin ketone	0.344300	0.05	0.003	0.500000		68.9	47 - 121	1.80	20	
Endrin ketone [2C]	0.384035	0.05	0.003	0.500000		76.8	47 - 121	1.30	20	
gamma-BHC	0.369115	0.02	0.002	0.500000		73.8	57 - 116	2.13	20	
gamma-BHC [2C]	0.366720	0.02	0.002	0.500000		73.3	57 - 116	2.57	20	
gamma-Chlordane	0.388010	0.02	0.002	0.500000		77.6	53 - 120	1.83	20	
gamma-Chlordane [2C]	0.351295	0.02	0.002	0.500000		70.3	53 - 120	2.36	20	
Heptachlor	0.396315	0.02	0.002	0.500000		79.3	55 - 121	4.69	20	
Heptachlor [2C]	0.399700	0.02	0.002	0.500000		79.9	55 - 121	1.77	20	
Heptachlor epoxide	0.381660	0.02	0.002	0.500000		76.3	54 - 113	1.41	20	
Heptachlor epoxide [2C]	0.356475	0.02	0.002	0.500000		71.3	54 - 113	2.14	20	
Methoxychlor	0.422555	0.25	0.008	0.500000		84.5	47 - 135	1.01	20	
Methoxychlor [2C]	0.429630	0.25	0.008	0.500000		85.9	47 - 135	1.40	20	
Surrogate: Decachlorobiphenyl	0.3184			0.500000		63.7	8 - 128			
Surrogate: Decachlorobiphenyl [0.2935			0.500000		58.7	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.3537			0.500000		70.7	32 - 126			
Surrogate: Tetrachloro-m-xylene	0.3414			0.500000		68.3	32 - 126			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

Polychlorinated Biphenyls by EPA 8082 - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0268 - GCSEMI_PC	B/PEST W									
Blank (B8K0268-BLK1)	Z.1 201_11				Prepared	d: 11/7/2018 A	Analyzed: 11/7/	2018		
Aroclor 1016	ND	0.50	0.04		1		3			
Aroclor 1221	ND	1.0	0.04							
Aroclor 1232	ND	0.50	0.04							
Aroclor 1242	ND	0.50	0.04							
Aroclor 1248	ND	0.50	0.04							
Aroclor 1254	ND	0.50	0.04							
Aroclor 1260	ND	0.50	0.04							
Aroclor 1262	ND	0.50	0.04							
Aroclor 1268	ND	0.50	0.04							
Surrogate: Decachlorobiphenyl	0.3948	0.50	0.01	0.500000		79.0	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.5948			0.500000		102	32 - 126			
Surroguie. 1etracnioro-m-xylene	0.5001			0.300000		102	32 - 120			
Blank (B8K0268-BLK2)					Prepared	d: 11/7/2018 A	Analyzed: 11/8/	2018		
Aroclor 1016	ND	0.50	0.04							
Aroclor 1221	ND	1.0	0.04							
Aroclor 1232	ND	0.50	0.04							
Aroclor 1242	ND	0.50	0.04							
Aroclor 1248	ND	0.50	0.04							
Aroclor 1254	ND	0.50	0.04							
Aroclor 1260	ND	0.50	0.04							
Aroclor 1262	ND	0.50	0.04							
Aroclor 1268	ND	0.50	0.04							S10
Surrogate: Decachlorobiphenyl	0.000			0.500000		NR	8 - 128			S10
Surrogate: Tetrachloro-m-xylene	0.000			0.500000		NR	32 - 126			
LCS (B8K0268-BS1)					Prepared		Analyzed: 11/7/	2018		
Aroclor 1016	4.23324	0.50	0.04	5.00000	•	84.7	72 - 107			
Aroclor 1260	4.56826	0.50	0.04	5.00000		91.4	65 - 124			
Surrogate: Decachlorobiphenyl	0.3884			0.500000		77.7	8 - 128			
Surrogate: Tetrachloro-m-xylene	0.3884			0.500000		98.6	32 - 126			
LCS (B8K0268-BS2)	0.1720			0.20000	Dranama		Analyzed: 11/8/	2018		
· ·	ND	0.50	0.04		riepare		•	2010		
Aroclor 1016	ND	0.50	0.04			NR	72 - 107			
Aroclor 1260	ND	0.50	0.04			NR	65 - 124			
Surrogate: Decachlorobiphenyl	0.000			0.500000		NR	8 - 128			S10
Surrogate: Tetrachloro-m-xylene	0.000			0.500000		NR	32 - 126			S10
LCS Dup (B8K0268-BSD1)					Prepared	d: 11/7/2018 A	Analyzed: 11/7/	2018		
Aroclor 1016	4.21780	0.50	0.04	5.00000		84.4	72 - 107	0.365	20	
Aroclor 1260	4.55078	0.50	0.04	5.00000		91.0	65 - 124	0.383	20	
Surrogate: Decachlorobiphenyl	0.3912			0.500000		78.2	8 - 128			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Polychlorinated Biphenyls by EPA 8082 - Quality Control (cont'd)

	Result	PQL	Spike	Source		% Rec		RPD			
Analyte	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes		
Batch B8K0268 - GCSEMI_PC	CB/PEST_W (c	continued)									
LCS Dup (B8K0268-BSD1) - Continued					Prepared: 11/7/2018 Analyzed: 11/7/2018						
Surrogate: Tetrachloro-m-xylene	0.4927		0.500000		98.5	32 - 126					
LCS Dup (B8K0268-BSD2)					Prepared: 11/7/2018 Analyzed: 11/8/2018						

Dibromomethane

ND

0.50

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Volatile Organic Compounds by EPA 8260B - Quality Control

											1
	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes	

Allaryte	(ug/L)	(ug/L)	(ug/L)	LCVCI	Result	70 ICCC	Lillito	KI D	Limit	110103
Batch B8K0325 - MSVOA_W										
Dattii DONU323 - MS v OA_w										
Blank (B8K0325-BLK1)	Prepared: 11/9/2018 Analyzed: 11/9/2018									
1,1,1,2-Tetrachloroethane	ND	0.50	0.11							
1,1,1-Trichloroethane	ND	0.50	0.18							
1,1,2,2-Tetrachloroethane	ND	0.50	0.17							
1,1,2-Trichloroethane	ND	0.50	0.12							
1,1-Dichloroethane	ND	0.50	0.16							
1,1-Dichloroethene	ND	0.50	0.09							
1,1-Dichloropropene	ND	0.50	0.21							
1,2,3-Trichloropropane	ND	0.50	0.16							
1,2,3-Trichlorobenzene	ND	0.50	0.12							
1,2,4-Trichlorobenzene	ND	0.50	0.12							
1,2,4-Trimethylbenzene	ND	0.50	0.08							
1,2-Dibromo-3-chloropropane	ND	0.50	0.24							
1,2-Dibromoethane	ND	0.50	0.11							
1,2-Dichlorobenzene	ND	0.50	0.09							
1,2-Dichloroethane	ND	0.50	0.19							
1,2-Dichloropropane	ND	0.50	0.36							
1,3,5-Trimethylbenzene	ND	0.50	0.05							
1,3-Dichlorobenzene	ND	0.50	0.10							
1,3-Dichloropropane	ND	0.50	0.07							
1,4-Dichlorobenzene	ND	0.50	0.07							
2,2-Dichloropropane	ND	0.50	0.16							
2-Chlorotoluene	ND	0.50	0.08							
4-Chlorotoluene	ND	0.50	0.08							
4-Isopropyltoluene	ND	0.50	0.06							
Benzene	ND	0.50	0.03							
Bromobenzene	ND	0.50	0.09							
Bromochloromethane	ND	0.50	0.24							
Bromodichloromethane	ND	0.50	0.14							
Bromoform	ND	0.50	0.13							
Bromomethane	ND	0.50	0.42							
Carbon disulfide	ND	1.0	0.12							
Carbon tetrachloride	ND	0.50	0.19							
Chlorobenzene	ND	0.50	0.07							
Chloroethane	ND	0.50	0.40							
Chloroform	ND	0.50	0.17							
Chloromethane	ND	0.50	0.08							
cis-1,2-Dichloroethene	ND	0.50	0.13							
cis-1,3-Dichloropropene	ND	0.50	0.05							
Di-isopropyl ether	ND	0.50	0.12							
Dibromochloromethane	ND	0.50	0.14							

0.10

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

MDL

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

PQL

Result

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

Spike

Source

	Result	1 QL	WIDL	Spike	Source		/ 0 ICC		мъ	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Datal DOVO225 MOVOA W/										
Batch B8K0325 - MSVOA_W (c										
Blank (B8K0325-BLK1) - Continue	d				Prepare	d: 11/9/2018 A	Analyzed: 11/9/	2018		
Dichlorodifluoromethane	ND	0.50	0.10							
Ethyl Acetate	ND	10	1.8							
Ethyl Ether	ND	10	1.3							
Ethyl tert-butyl ether	ND	0.50	0.11							
Ethylbenzene	ND	0.50	0.07							
Freon-113	ND	0.50	0.17							
Hexachlorobutadiene	ND	0.50	0.14							
Isopropylbenzene	ND	0.50	0.05							
m,p-Xylene	ND	1.0	0.08							
Methylene chloride	ND	1.0	0.46							
MTBE	ND	0.50	0.12							
n-Butylbenzene	ND	0.50	0.05							
n-Propylbenzene	ND	0.50	0.07							
Naphthalene	ND	0.50	0.15							
o-Xylene	ND	0.50	0.05							
sec-Butylbenzene	ND	0.50	0.04							
Styrene	ND	0.50	0.06							
tert-Amyl methyl ether	ND	0.50	0.11							
tert-Butanol	ND	10	2.9							
tert-Butylbenzene	ND	0.50	0.06							
Tetrachloroethene	ND	0.50	0.07							
Toluene	ND	0.50	0.07							
trans-1,2-Dichloroethene	ND	0.50	0.11							
trans-1,3-Dichloropropene	ND	0.50	0.04							
Trichloroethene	ND	0.50	0.05							
Trichlorofluoromethane	ND	0.50	0.14							
Vinyl acetate	ND	10	1.3							
Vinyl chloride	ND	0.50	0.05							
Surrogate: 1,2-Dichloroethane-d4	22.30			25.0000		89.2	57 - 152			
Surrogate: 4-Bromofluorobenzene	24.21			25.0000		96.8	62 - 134			
Surrogate: Dibromofluoromethan	21.18			25.0000		84.7	56 - 167			
Surrogate: Toluene-d8	24.66			25.0000		98.6	33 - 170			
LCS (B8K0325-BS1)					Prepare	d: 11/9/2018 A	Analyzed: 11/9/	2018		
1,1,1,2-Tetrachloroethane	18.1600	0.50	0.11	20.0000		90.8	80 - 137			
1,1,1-Trichloroethane	17.6200	0.50	0.18	20.0000		88.1	75 - 148			
1,1,2,2-Tetrachloroethane	17.1200	0.50	0.17	20.0000		85.6	64 - 118			
1,1,2-Trichloroethane	16.8300	0.50	0.12	20.0000		84.2	77 - 113			
1,1-Dichloroethane	17.0100	0.50	0.16	20.0000		85.0	72 - 131			
1,1-Dichloroethene	16.7800	0.50	0.09	20.0000		83.9	75 - 132			
1,1-Dichloropropene	17.7800	0.50	0.21	20.0000		88.9	84 - 141			

RPD

% Rec

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D . I DOVIGOA - 3-55775 :	, ,• · ·									
Batch B8K0325 - MSVOA_W	(continued)									
LCS (B8K0325-BS1) - Continued					Prepared	1: 11/9/2018	Analyzed: 11/9/	2018		
,2,3-Trichloropropane	16.4600	0.50	0.16	20.0000		82.3	65 - 111			
,2,3-Trichlorobenzene	17.3200	0.50	0.12	20.0000		86.6	79 - 117			
,2,4-Trichlorobenzene	17.8600	0.50	0.12	20.0000		89.3	78 - 121			
,2,4-Trimethylbenzene	19.7500	0.50	0.08	20.0000		98.8	83 - 125			
,2-Dibromo-3-chloropropane	14.3500	0.50	0.24	20.0000		71.8	54 - 116			
,2-Dibromoethane	17.1500	0.50	0.11	20.0000		85.8	79 - 118			
,2-Dichlorobenzene	19.4600	0.50	0.09	20.0000		97.3	82 - 115			
,2-Dichloroethane	17.0000	0.50	0.19	20.0000		85.0	76 - 115			
,2-Dichloropropane	18.3700	0.50	0.36	20.0000		91.8	74 - 113			
,3,5-Trimethylbenzene	19.9800	0.50	0.05	20.0000		99.9	83 - 126			
,3-Dichlorobenzene	20.1200	0.50	0.10	20.0000		101	84 - 118			
,3-Dichloropropane	17.5100	0.50	0.07	20.0000		87.6	72 - 116			
,4-Dichlorobenzene	19.0900	0.50	0.07	20.0000		95.4	83 - 112			
,2-Dichloropropane	19.2100	0.50	0.16	20.0000		96.0	72 - 150			
-Chlorotoluene	21.0000	0.50	0.08	20.0000		105	82 - 120			
-Chlorotoluene	21.2500	0.50	0.08	20.0000		106	81 - 121			
-Isopropyltoluene	19.9300	0.50	0.06	20.0000		99.6	86 - 124			
Benzene	36.6100	0.50	0.03	40.0000		91.5	81 - 118			
Bromobenzene	19.7600	0.50	0.09	20.0000		98.8	82 - 117			
Bromochloromethane	16.2200	0.50	0.24	20.0000		81.1	70 - 136			
Bromodichloromethane	19.2700	0.50	0.14	20.0000		96.4	80 - 122			
Bromoform	15.6900	0.50	0.13	20.0000		78.4	53 - 145			
Bromomethane	19.8300	0.50	0.42	20.0000		99.2	30 - 204			
Carbon disulfide	17.6400	1.0	0.12	20.0000		88.2	85 - 131			
Carbon tetrachloride	18.8600	0.50	0.19	20.0000		94.3	77 - 157			
Chlorobenzene	18.7200	0.50	0.07	20.0000		93.6	86 - 113			
Chloroethane	18.2300	0.50	0.40	20.0000		91.2	70 - 160			
Chloroform	16.9400	0.50	0.17	20.0000		84.7	66 - 136			
Chloromethane	17.6700	0.50	0.08	20.0000		88.4	52 - 138			
is-1,2-Dichloroethene	16.9000	0.50	0.13	20.0000		84.5	71 - 128			
is-1,3-Dichloropropene	16.6900	0.50	0.05	20.0000		83.4	71 - 123			
Di-isopropyl ether	16.1200	0.50	0.12	20.0000		80.6	64 - 123			
Dibromochloromethane	16.9300	0.50	0.14	20.0000		84.6	78 - 140			
Dibromomethane	17.2500	0.50	0.10	20.0000		86.2	78 - 109			
Dichlorodifluoromethane	18.8100	0.50	0.10	20.0000		94.0	64 - 144			
thyl Acetate	140.600	10	1.8	200.000		70.3	55 - 123			
Ethyl Ether	146.520	10	1.3	200.000		73.3	74 - 122			L4
Ithyl tert-butyl ether	15.3400	0.50	0.11	20.0000		76.7	72 - 120			
thylbenzene	40.3600	0.50	0.07	40.0000		101	90 - 116			
reon-113	17.9200	0.50	0.17	20.0000		89.6	76 - 143			
Iexachlorobutadiene	21.4500	0.50	0.14	20.0000		107	81 - 129			
sopropylbenzene	20.0700	0.50	0.05	20.0000		100	83 - 129			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0325 - MSVOA_W (c	ontinued)									
LCS (B8K0325-BS1) - Continued	onunucu)				Pranara	4· 11/0/2019 /	Analyzed: 11/9/	2018		
· · · · · · · · · · · · · · · · · · ·	4. 0.000				Prepared		•	2018		
m,p-Xylene	42.9600	1.0	0.08	40.0000		107	88 - 124			
Methylene chloride	18.3300	1.0	0.46	20.0000		91.6	76 - 137			
MTBE	14.4000	0.50	0.12	20.0000		72.0	67 - 121			
n-Butylbenzene	19.7100	0.50	0.05	20.0000		98.6	83 - 129			
n-Propylbenzene	21.9900	0.50	0.07	20.0000		110	85 - 124			
Naphthalene	15.2700	0.50	0.15	20.0000		76.4	67 - 113			
o-Xylene	39.1300	0.50	0.05	40.0000		97.8	82 - 129			
sec-Butylbenzene	20.0400	0.50	0.04	20.0000		100	86 - 127			
Styrene	18.5000	0.50	0.06	20.0000		92.5	83 - 122			
tert-Amyl methyl ether	15.1600	0.50	0.11	20.0000		75.8	61 - 114			
tert-Butanol	59.9600	10	2.9	100.000		60.0	45 - 121			
tert-Butylbenzene	19.7000	0.50	0.06	20.0000		98.5	84 - 130			
Tetrachloroethene	19.9800	0.50	0.07	20.0000		99.9	87 - 123			
Toluene	38.7800	0.50	0.07	40.0000		97.0	84 - 115			
trans-1,2-Dichloroethene	16.9400	0.50	0.11	20.0000		84.7	60 - 148			
trans-1,3-Dichloropropene	15.7600	0.50	0.04	20.0000		78.8	77 - 118			
Trichloroethene	18.7900	0.50	0.05	20.0000		94.0	79 - 129			
Trichlorofluoromethane	17.0300	0.50	0.14	20.0000		85.2	68 - 162			
Vinyl acetate	176.610	10	1.3	200.000		88.3	65 - 134			
Vinyl chloride	17.1400	0.50	0.05	20.0000		85.7	73 - 128			
Surrogate: 1,2-Dichloroethane-d4	20.99			25.0000		84.0	57 - 152			
Surrogate: 4-Bromofluorobenzene	25.27			25.0000		101	62 - 134			
Surrogate: Dibromofluoromethan	21.53			25.0000		86.1	56 - 167			
Surrogate: Toluene-d8	25.10			25.0000		100	33 - 170			
LCS Dup (B8K0325-BSD1)					Prepared	d: 11/9/2018 A	Analyzed: 11/9/	2018		
1,1,1,2-Tetrachloroethane	19.3100	0.50	0.11	20.0000		96.6	80 - 137	6.14	20	
1,1,1-Trichloroethane	18.6000	0.50	0.18	20.0000		93.0	75 - 148	5.41	20	
1,1,2,2-Tetrachloroethane	20.3600	0.50	0.17	20.0000		102	64 - 118	17.3	20	
1,1,2-Trichloroethane	19.5300	0.50	0.12	20.0000		97.6	77 - 113	14.9	20	
1,1-Dichloroethane	17.7700	0.50	0.16	20.0000		88.8	72 - 131	4.37	20	
1,1-Dichloroethene	17.5400	0.50	0.09	20.0000		87.7	75 - 132	4.43	20	
1,1-Dichloropropene	18.4000	0.50	0.21	20.0000		92.0	84 - 141	3.43	20	
1,2,3-Trichloropropane	19.2600	0.50	0.16	20.0000		96.3	65 - 111	15.7	20	
1,2,3-Trichlorobenzene	19.3300	0.50	0.12	20.0000		96.6	79 - 117	11.0	20	
1,2,4-Trichlorobenzene	19.2000	0.50	0.12	20.0000		96.0	78 - 121	7.23	20	
1,2,4-Trimethylbenzene	19.9900	0.50	0.08	20.0000		100	83 - 125	1.21	20	
1,2-Dibromo-3-chloropropane	17.7100	0.50	0.03	20.0000		88.6	54 - 116	21.0	20	R
1,2-Dibromoethane	20.6300	0.50	0.24	20.0000		103	79 - 118	18.4	20	K
1,2-Dichlorobenzene	20.6300		0.11	20.0000		103				
		0.50					82 - 115	4.81	20	
1,2-Dichloroethane	18.5100	0.50	0.19	20.0000		92.6	76 - 115	8.50	20	

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

		PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0325 - MSVOA_W	(continued)									
LCS Dup (B8K0325-BSD1) - Cont	tinued				Prepared	d: 11/9/2018 A	Analyzed: 11/9/	2018		
,2-Dichloropropane	19.7200	0.50	0.36	20.0000		98.6	74 - 113	7.09	20	
,3,5-Trimethylbenzene	20.0300	0.50	0.05	20.0000		100	83 - 126	0.250	20	
,3-Dichlorobenzene	20.6200	0.50	0.10	20.0000		103	84 - 118	2.45	20	
,3-Dichloropropane	19.9800	0.50	0.07	20.0000		99.9	72 - 116	13.2	20	
,4-Dichlorobenzene	19.7400	0.50	0.07	20.0000		98.7	83 - 112	3.35	20	
2,2-Dichloropropane	19.7100	0.50	0.16	20.0000		98.6	72 - 150	2.57	20	
2-Chlorotoluene	21.2500	0.50	0.08	20.0000		106	82 - 120	1.18	20	
l-Chlorotoluene	21.4600	0.50	0.08	20.0000		107	81 - 121	0.983	20	
l-Isopropyltoluene	20.0000	0.50	0.06	20.0000		100	86 - 124	0.351	20	
Benzene	38.0800	0.50	0.03	40.0000		95.2	81 - 118	3.94	20	
Bromobenzene	20.6100	0.50	0.09	20.0000		103	82 - 117	4.21	20	
Bromochloromethane	17.8900	0.50	0.24	20.0000		89.4	70 - 136	9.79	20	
Bromodichloromethane	20.7100	0.50	0.14	20.0000		104	80 - 122	7.20	20	
Bromoform	17.8800	0.50	0.13	20.0000		89.4	53 - 145	13.0	20	
Bromomethane	17.9300	0.50	0.42	20.0000		89.6	30 - 204	10.1	20	
Carbon disulfide	17.9900	1.0	0.12	20.0000		90.0	85 - 131	1.96	20	
Carbon tetrachloride	19.1700	0.50	0.19	20.0000		95.8	77 - 157	1.63	20	
Chlorobenzene	19.4900	0.50	0.07	20.0000		97.4	86 - 113	4.03	20	
Chloroethane	17.9600	0.50	0.40	20.0000		89.8	70 - 160	1.49	20	
Chloroform	17.8100	0.50	0.17	20.0000		89.0	66 - 136	5.01	20	
Chloromethane	17.9200	0.50	0.08	20.0000		89.6	52 - 138	1.40	20	
eis-1,2-Dichloroethene	17.6900	0.50	0.13	20.0000		88.4	71 - 128	4.57	20	
eis-1,3-Dichloropropene	18.2700	0.50	0.05	20.0000		91.4	71 - 123	9.04	20	
Di-isopropyl ether	17.4500	0.50	0.12	20.0000		87.2	64 - 123	7.92	20	
Dibromochloromethane	18.7100	0.50	0.14	20.0000		93.6	78 - 140	9.99	20	
Dibromomethane	19.3500	0.50	0.10	20.0000		96.8	78 - 109	11.5	20	
Dichlorodifluoromethane	19.2600	0.50	0.10	20.0000		96.3	64 - 144	2.36	20	
Ethyl Acetate	176.930	10	1.8	200.000		88.5	55 - 123	22.9	20	R
Ethyl Ether	164.340	10	1.3	200.000		82.2	74 - 122	11.5	20	
Ethyl tert-butyl ether	17.6700	0.50	0.11	20.0000		88.4	72 - 120	14.1	20	
Ethylbenzene	41.5400	0.50	0.07	40.0000		104	90 - 116	2.88	20	
Freon-113	18.3200	0.50	0.17	20.0000		91.6	76 - 143	2.21	20	
Hexachlorobutadiene	21.3600	0.50	0.14	20.0000		107	81 - 129	0.420	20	
sopropylbenzene	20.2800	0.50	0.05	20.0000		101	83 - 129	1.04	20	
n,p-Xylene	44.2000	1.0	0.08	40.0000		110	88 - 124	2.85	20	
Methylene chloride	19.4300	1.0	0.46	20.0000		97.2	76 - 137	5.83	20	
MTBE	17.3100	0.50	0.12	20.0000		86.6	67 - 121	18.4	20	
n-Butylbenzene	19.7400	0.50	0.05	20.0000		98.7	83 - 129	0.152	20	
n-Propylbenzene	22.1000	0.50	0.07	20.0000		110	85 - 124	0.499	20	
Naphthalene	18.3200	0.50	0.07	20.0000		91.6	67 - 113	18.2	20	
-apinamene		0.50	0.15	40.0000		101	82 - 129	3.59	20	
o-Xylene	40.5600									

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0325 - MSVOA_W (c	ontinued)									
LCS Dup (B8K0325-BSD1) - Conti	nued				Prepared	l: 11/9/2018 A	Analyzed: 11/9/2	2018		
Styrene	19.2300	0.50	0.06	20.0000		96.2	83 - 122	3.87	20	
tert-Amyl methyl ether	18.1800	0.50	0.11	20.0000		90.9	61 - 114	18.1	20	
tert-Butanol	84.8300	10	2.9	100.000		84.8	45 - 121	34.4	20	R
tert-Butylbenzene	19.8500	0.50	0.06	20.0000		99.2	84 - 130	0.759	20	
Tetrachloroethene	20.3800	0.50	0.07	20.0000		102	87 - 123	1.98	20	
Toluene	40.7300	0.50	0.07	40.0000		102	84 - 115	4.91	20	
trans-1,2-Dichloroethene	17.7300	0.50	0.11	20.0000		88.6	60 - 148	4.56	20	
trans-1,3-Dichloropropene	17.8500	0.50	0.04	20.0000		89.2	77 - 118	12.4	20	
Trichloroethene	19.6600	0.50	0.05	20.0000		98.3	79 - 129	4.53	20	
Trichlorofluoromethane	17.2300	0.50	0.14	20.0000		86.2	68 - 162	1.17	20	
Vinyl acetate	205.850	10	1.3	200.000		103	65 - 134	15.3	20	
Vinyl chloride	17.6500	0.50	0.05	20.0000		88.2	73 - 128	2.93	20	
Surrogate: 1,2-Dichloroethane-d4	22.37			25.0000		89.5	57 - 152			
Surrogate: 4-Bromofluorobenzene	25.82			25.0000		103	62 - 134			
Surrogate: Dibromofluoromethan	21.93			25.0000		87.7	56 - 167			
Surrogate: Toluene-d8	25.18			25.0000		101	33 - 170			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 11/12/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/L)	(ug/L)	(ug/L)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8K0328 - MSVOA_W										
Blank (B8K0328-BLK1)					Prepare	d: 11/9/2018	Analyzed: 11/9/2	2018		
Gasoline Range Organics	ND	50	15							
Surrogate: 1,2-Dichloroethane-d4	21.40	·		25.0000	·	85.6	57 - 152			
Surrogate: 4-Bromofluorobenzene	23.60			25.0000		94.4	62 - 134			
Surrogate: Dibromofluoromethan	20.85			25.0000		83.4	56 - 167			
Surrogate: Toluene-d8	23.60			25.0000		94.4	33 - 170			
LCS (B8K0328-BS1)					Prepare	d: 11/9/2018	Analyzed: 11/9/	2018		
Gasoline Range Organics	950.000	50	15	1000.00		95.0	70 - 130			
Surrogate: 1,2-Dichloroethane-d4	20.88			25.0000		83.5	57 - 152		•	•
Surrogate: 4-Bromofluorobenzene	24.43			25.0000		97.7	62 - 134			
Surrogate: Dibromofluoromethan	20.24			25.0000		81.0	56 - 167			
Surrogate: Toluene-d8	24.37			25.0000		97.5	33 - 170			
LCS Dup (B8K0328-BSD1)					Prepare	d: 11/9/2018	Analyzed: 11/9/	2018		
Gasoline Range Organics	950.000	50	15	1000.00		95.0	70 - 130	0.00	20	
Surrogate: 1,2-Dichloroethane-d4	21.84			25.0000		87.4	57 - 152			
Surrogate: 4-Bromofluorobenzene	24.76			25.0000		99.0	62 - 134			
Surrogate: Dibromofluoromethan	20.65			25.0000		82.6	56 - 167			
Surrogate: Toluene-d8	24.53			25.0000		98.1	33 - 170			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 11/12/2018

Notes and Definitions

	1,000 una 201111000
S13	Surrogate recovery was below laboratory acceptance limit. Sample reanalysis showed the same low recovery.
S10	Surrogate recovery was outside of laboratory acceptance limit due to possible matrix interference.
R3	RPD value outside acceptance criteria. Calculation is based on raw values. The analytical batch was validated by the Laboratory Control Sample (LCS).
R	RPD value outside acceptance criteria. Calculation is based on raw values.
M2	Matrix spike recovery outside of acceptance limit due to possible matrix interference. The analytical batch was validated by the laboratory control sample.
M1	Matrix spike recovery outside of acceptance limit. The analytical batch was validated by the laboratory control sample.
L4	Laboratory Control Sample outside of control limit but within Marginal Exceedance (ME) limit.
J	Analyte detected below the Practical Quantitation Limit but above or equal to the Method Detection Limit. Result is an estimated concentration.
D7	A lesser amount of sample was analyzed due to matrix.
D1	Sample required dilution due to possible matrix interference.
ND	Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL, analyte is not detected at or above the Method Detection Limit (MDL)
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
NR	Not Reported
RPD	Relative Percent Difference
CA2	CA-ELAP (CDPH)

Notes:

OR1

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
- (3) Results are wet unless otherwise specified.

OR-NELAP (OSPHL)

ADVANCED A TECHNOLOGY	
	15
	+2
	**

	*
	m.
4	w
4	***
	d
6	u,
8	
9	×.
0	
	ø.
	أميد
1000	
	23
1.53	2
	200
,y-	e e
· ·	# 4
-44	# ~
and the	# ~
Maryle .	## ##
1000	## ##
pm ₃	# *
()	# **
	~
~	** <
, m	## ##

CUSTOMER

		For Laboratory Use Only	, only		ATECOC Ver: 20
		Samp	ie Condit	tions L	Sample Conditions Upon Receipt
Methoc	Method of Iransport	Condition	۸	*	Condition
Z Client	□ Aff.	1. CHRLED	ØĹ	3.4	🗹 🔲 S. # OF SAMPLES MATCH CO
EegE □	OnTrac	2. HEADSPACE (VOA)		Ε. Ε.	G. PRESERVED
§ □ I		3. CONTAINER INTACT	ЪĽ	7.	Z 🔲 7. COOLER TENNE, deg. C
Other:		4. SEALED		7	

											For	For Laboratory Use Only	Use Only		ATLCO	ATLCOC Ver:20180321	80321
< >		NANCED A TICHNOLOGY	CHAINO	AIN OF CUSTODY RECORD		Y RE(_	Methoda	Method of Transport		Condition	ample Con	Sample Conditions Upon Receipt	n Receipt Condition		z
				Page 1	o to				1	٥	1. CHREED			5.#0	F SAMPLES R	5. # OF SAMPLES MATCH COC Z	
3775	A. Signal	HIII. CA 90755	i i i i								2. HEADSPACE (VOA)	ACE (VOA)			6. PRESERVED		D D
	PI (562) 989-4045 • Fax: (562) 989-4040	(562) 989-4040				The state of the s			0S0 T		3. CONTAI	3. CONTAINER INTACT	Á		7. COOLER TEMP, deg C		4.7
:			Instruct	Instruction: Complete all shaded areas.	te all sho	ided area	.:		Other:		4. SEALED			0.07			
Com	Company:		1122	Address:	17781 Cowan	(an						Tel		949-250-142	21		
	Leighton Consulting	ısultıng		City:	Irvine				State: C	5	Zip: 92614	Fax	×				
		SEND REPORT TO:				SENI	SEND INVOICE TO	:0		Sar	Same as SEND	O REPORT TO	110	gga [QA/QC	یا
Attn:	Ross Surrency	Email	rsurrency@leightongroup.com	Attn:	Account	Accounts Payable				Email:	acctpayable@leightougroup.com	leightongro	uto-com	Excel	<u> </u>	Routine	utine
E O	Company: Leighton Consulting	salting		Company:	Leighton Group	Group			187					Equis	instrum SID		2 c
Address	ess: 17781 Cowan			Address:	17781 Cowan	owan			e e e))		Level IV	g ≥
Ġ.	Irvine	State: CA	Zip: 92614	Cltty:	Irvine				State:	e: CA	Zipi: ç	92614				ן ב	
Proj	Project Name:	Quote #: Specia	Special Instructions/Comments	nents:			Requested Analysi	l Analysis	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT		Sampl	Sample Matrix	Ļ	Ŝ	Container	-	
Ϋ́	LAUSD - Colfax ES	D18J041			(sə			910					(<u>.</u>	t)t	łs		
Proj 116	Project No.: 11640.008	PO#1			Pesticid			3-C40) 80				Matrix		ild=4 ;19tU	ntc; 3=Met		
San J. B	Sampler: J. Bobiwash					sisyle sisyle	sisyle				id Matrix ter Matrix	stewater n-aqueou	htsM mot miT bnu	** Z#AOV* 3*	ar, 7 = Canist Gless; 2=Pla	c)5; 6=N8OH; 6: 1=HCl; 2=H	
M	l aboratory ID	Sample Description	otion		egiO) 309) (989) (ot Ans	snA to snA to sr08 t	36 oin 7 үли: ,ОЯО		a		ct Wa		dine	ib <u>ə</u> T=8		narls
ЭTI	(For Lab Use Only)	Sample ID / Location	Date	Time	2808	ələ2 ələ2	9195	Mero		ТОН		Sele			nel≈č Mate		Rer
₹	15-12/2081	PERI-SW-0.5	8/8/11	1718	X								3	1 5		4	
2		PERI-SW-1.5		714	\leq					A a			-				
3	CONT.	PER1-SW-3.0		五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二						X							
4	70.	PERI-SE-0.5		721	X												
5		PER1-SE-1.5		133	X			- 2		\times							
9		PER1-SE-3.0		723					•	CMI)							
7	6	PER22-NW-0.5		1819				\times									
8	201	PER22-NW-1.5		1820				X	., .	M							
6	60-	PER22-NW-3.0)	RAL						\times		e61 S		Š	Ź	3	
10												30.00				_	
1. Sarr 2. Sarr 3. The	pile receiving hours; 7:30 AMI to 7:30 PM Monday - Friday; Sat. piles submitted AFTER 3:00 PM are considered received the fol following turnstound three conditions apply. TAI = 1, 100%, Surchage SAMIE BUSINESS DAY (FREE	 Sample receiving hours: 7:30 AW to 7:30 PM Monday - Friday, Saturday 8:00 AM to 12:00 PM. Samples submitted AFTER 3:00 PM are considered received the following business day at 8:00 AM. The following turnsround firms confidens apply if received by 9:00 AM. TM = 0:300% surcharge SAME BUSINESS DAY (received by 9:00 AM. TM = 1: 100% surcharge RAME BUSINESS DAY (CDS SOOP PM). TM = 1: 100% surcharge TAME BUSINESS DAY (CDS SOOP PM). 	to the subcontract lab ask for quote. 6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples will be disposed of after 14 calendar days after receipt of samples. 7. Electronic records maintained for the (5) years from report date. 8. Had cropy reports will be disposed of after 45 calendar days from report date.	ask for quote. Il be disposed of after 14 calendar days ed for five (5) years sposed of after 45 c	er 45 calendar after receipt of from report da alendar days fr	days from recei samples, te, om report date.	pt of samples; a		regen 10. Rush TCLP// 11. Unanalyzed 2. The laborat Matrix	regenerated/reformated report, \$35 per reprocessed EDD. 10. Rush (Tcl/\$TIC sample's and 2 days to an abaylist \$17 for extraction procedure. 10. The laboratory will randomly select from all CC samples received the sample to spike for Matrix Spike / Natirx Spike places (Matrix Spike / Natirx Spike / Natir	itted report; \$; idd 2 days to a cur a disposal nly sefect from e (MS/MSD) a your sample, i	35 per reproc nalysis TAT for fee of \$7 per all QC sampi t no cost. Ho	cessed EDI or extractic r sample. les receive wæver, if y	on procedured the same	re. ole to spike e faborator pecific sam	for Matrix 9 y to additic ple used.	Spike/ onaffy
	TAT = 3: 30% Surchange 8RD BUSINESS DAY (COB 5:00 PM) TAT = 4: 20% Surchange 4TH BUSINESS DAY (COB 5:00 PM) TAT = 4: 20% Surchange 4TH BUSINESS DAY (COB 5:00 PM) TAT = 5: NO SURCHARGE 5th BUSINESS DAY (COB 5:00 PM)	SINESS DAY (COB 5:00 PM) SINESS DAY (COB 5:00 PM)	· Liquid Sapid samples: Complimentary storage for forty-five (45) calendar days from receipt of samples; \$2/sample/month if extended storage or hold is requested. · All samples: Complimentary storage for ten (10) calendar days from receipt of samples;	in the solid samples. Complimentary storage for forty-five (45) calendar days from rec nples; \$2/sample/month if extended storage or hold is requested. samples (Complimentary storage for ten (10) calendar days from receipt of samples;	orage for forty- brage or hold in (10) calenda	five (45) calends s requested. r days from rece	ir days from reci ipt of samples;	eipt of									

PROJECT SAMPLES

to the subcontract lab — ask for guotes. So calendar days from receipt of samples, sair samples will be disposed or after 45 calendar days from receipt of samples, will be disposed of after 14 calendar days after receipt of samples.

7. Electronic records maintained for five (5) years from report date.

8. Hard copy reports will be disposed of after 45 calendar days from report date.

9. Storage and Report Feas:

5. Storage and Report Feas:

6. It samples; DAS ample from hit for section for the (10) calendar days from receipt of samples; 250 sample from hit section for the (10) calendar days from receipt of samples; 250 sample from the (11 storage from the 10 storage from 10 sto

Received by: (Signature and Printed Name) Projects requiring shorter TATs will incur a surcharge respective 記 る 記 に Ps/K Weekend, holiday, after-hours work --- ask for quote. nted Name)

As the authorized agent of the company above, the eby-purchase laboratory services from ATL as shown above and hereby guarantee ayment as quoted Jennifer Bobiwash

> Time: /o.4c Time: Time:

Date:

Received by: (Signature and Printed Name) Received by: (Signature and Printed Name)

íme:

Date:

Date:

Signature

Printed Name

CUSTODY

Relinquished by: (Signature and Printed Name) Relinquished by: (Signature and Printed Name)

Relinquished by: (§ignati Subcontract TAT is 10 -Jennifer Bobiwash

SMB3T

	>	
	TECHNOLOGY	
	2 Z	¥
	200000	5.6
	\odot	986
	jana jana	A C L V B
	M,	·
		10
3	sattleth.	æ
		CHA
	<u>w</u>	æ
	\bigcirc	40
	DVANCED	•••
	2	

ATLCOC Ver:20180321 S. # OF SAMPLES MATCH COC 7. COOLER TEMP, deg : Condition Sample Conditions Upon Receipt 6. PRESERVED П For Laboratory Use Only > 3. CONTAINER INTACT 2. HEADSPACE (VBA) Condition Method of Transport Onfrac Client Client 650 Other.

Caltrans
Clegal
CRWQCB
Clevel IV Routine A regenerated/reformatted report, \$35 per reprocessed EDD.

10. Rent TcUP/STC samples and 2 days to analysis TrV for extraction procedure.

11. Ubanalyzed samples will incur a disposal fee of \$7 per sample.

12. The laboratory will randomly select from all QC samples received the sample to spike for Matrix Spike/ Matrix Spike Juplicate (MSJMSD) at no cost. However, if you want the laboratory to additionally perform MSIMSD on your sample, a charge will be assessed for the specific sample used. Remaris purchase laboratory perent as quoted Container Naterial: 1=Glass; 2=Plastic; 3=Metal **Equis** () Excel 949-250-1421 CEDF 「ype: 1=Tube; 2=VOA; 3=Liter; 4=Pint; 5=1at; 6=Tedlar; 7 = Canister Quantity As the authorized agent of the company above, I hereby services from ATL as shown above and hereby guayante TAT) 9miT bnuo1en1uT accipayable@leightongroup com Tel Enter Custom Matrix Fax Sample Matrix 92614 Select Non-aqueous Matrix Select Wastewater Matrix ZIP: 92614 Select Water Matrix Zip: Select Solid Matrix CAEmail Jennifer Bobiwash State: НОГВ State: CA Requested Analysis TPH-DRO, ORO (C13-C40) 8015 to the subcontract lab — ask for quota. 6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples Mercury 7471A - Ilquid & solid samples: Complimentary storage for forty-five (45) calendar days from receipt of samples, \$2/Samplekmonth if extended storage or hold is requested.

Air samples: Complimentary storage for ten (10) calendar days from receipt of samples; \$20 samples is requested; if extended storage is requested.

Hard copy and regenerated reggits/EDDs: \$17.50 per hard copy report requested; \$50.00 per Arsenic 6020 SEND INVOICE TO CHAIN OF CUSTODY RECORD rime; resq enuna ime: íme: Select Analysis Select Analysis Instruction: Complete all shaded areas. Accounts Payable Select Analysis Hard copy reports will be disposed of after 45 calendar days from report date 9. Storage and Report Fees: Leighton Group Select Analysis 17781 Cowan will be disposed of after 14 calendar days after receipt of samples. Select Analysis Address: 17781 Cowan Date: Date; Date Electronic records maintained for five (5) years from report date (ORO) et08 **Irvine** 8082 (PCBs) Irvine 8081 (Organochlorine Pesticides) Company: Ξ 井七 43 442 749 $\frac{\vee}{5}$ Address: Time 83 Received by: (Signature and Printed Name) Received by: (Signature and Printed Name) City: Attn: City. Special Instructions/Comments \sqcap Received by: (Signature and Printed rsurrency@leightongroup.com Date 2 (Zip: 92614 Sample Description Email CA200 1. Sample receiving hours, 7:30 AM to 7:30 PM Monday - Friday, Saturday 8:00 AM to 12:00 PM.
2. Samples submitted AFTER 3:00 PM are considered received the following business day at 8:00 AM.
3. The following turnaround time conditions apply: Sample ID / Location Time: State: D18J04 3. The following turnaround time conditions apply: TAT = 0 : 300°S, curchage Sharke BUSINESS DAY (COB 5::00 PM)
TAT = 1 : 100% Surchange AND BUSINESS DAY (COB 5::00 PM)
TAT = 3 : 90% Surchange AND BUSINESS DAY (COB 5::00 PM)
TAT = 3 : 90% Surchange AND BUSINESS DAY (COB 5::00 PM)
TAT = 4 : 20% Surchange AND BUSINESS DAY (COB 5::00 PM)
TAT = 5 : NO SURCHANGE THE BUSINESS DAY (COB 5::00 PM)
AT = 5 : NO SURCHANGE THE BUSINESS DAY (COB 5::00 PM)
AT = 5 : NO SURCHANGE THE BUSINESS DAY (COB 5::00 PM)
5 : Subcontract TAT is 10 : 15 business days. Projects requiring sharter TATs will incur a Quote #: 1119/18 SEND REPORT PO#: Date: PER22-NE-0.5 PER22-NE-1.5 PER22-NE-3.0 PER12-NE-0.5 PER12-NE-1.5 PER12-NE-3.0 PER12-SE-3.0 PER12-SE-0.5 PER12-SE-1.5 Tel: (562) 989-4045 • Fax: (562) 989-4040 3275 Walnut Ave., Signal Hill, CA 90755 Leighton Consulting Leighton Consulting And Branted Name sture and Printed Name) Relinquished by: (Signature and Printed Name) Ross Surrency 17781 Cowan 2 7.7 - . -3 5 Laboratory ID (For tab Use Only) LAUSD - Colfax ES Irvine ムセイシノ elinquished b∳⊷eng Project Name: Relinauished by J. Bobiwash Project No. Company: 11640.008 nifer Bobiw Sampler Company Address: 10 ITEM ব S Q ∞ φ CUSTOMER SAMPLES PROJECT TERMS CUSTODY

ADVANCED TECHNOLOGY L A B O R A T O R I E S 3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 • Fax: (562) 989-4040

RECORD CHAIN

X	
CUSTODY	Page 3 of 4
一	ه ا
ンフ	

Method of Transport Sample Conditions Upon Receipt Y in Condition Y in Condition <th></th> <th>For Laboratory Use Only</th> <th>Only</th> <th>ALLUC VEL. 20160321</th>		For Laboratory Use Only	Only	ALLUC VEL. 20160321
d of Transport Condition At 1.CHILED Onlac 2.HANDSPACE (VOA) 3.CONTAINER INTACT 4.SEALED		aldmes	Condition	ans Upon Receipt
At 1. CHILED Contac 2. Hagging 1. Chiles 3. Container intact 4. Sealed	Method of Transport	Condition	Z ≻	
Ontac 2. HEADSPACE (VDA) 3. CONTAINER INTACT 4. SEALED		1.CHILED	H	5. # OF SAMPLES MATCH COC 🔲 🗀
3. CONTAINER INTACT 4. SEALED		2. HEADSPACE (VOA)		6. PRESERVED
		3. CONTAINER INTACT	ᆸ	7, COOLER TEMP, deg C.
	Other	4.SEALED		

Tel: (562) 989-4045 • Fax: (562) 989-4040		Laightan Consulting		SEND REPORT TO		Leighton Consulting			Quote #		# Od				Sample	PER14-NE-0.5	PER14-NE-1.5	PER14-NE-3.0	PER14-SE-0.5	PER14-SE-1.5	PER14-SE-3.0		EB-2	DRUM COMPOSITE		1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. 2. Samples submitted AFTR 3:00 PM are considered received the following business day at 8:00 AM. 3. The following turnsround time conditions apply: TAT = 0:300% suchaige SAME BUSINESS DAY if received by 9:00 AM TAT = 1:300% suchaige AME BUSINESS DAY (COB 5:00 PM) TAT = 1:300% suchaige ARE BUSINESS DAY (COB 5:00 PM) TAT = 3:300% suchaige ARE BUSINESS DAY (COB 5:00 PM) TAT = 3:40% suchaige ARE BUSINESS DAY (COB 5:00 PM) TAT = 5:40 SURPHARGE F BUSINESS DAY (COB 5:00 PM) TAT = 5:40 SURPHARGE F BUSINESS DAY (COB 5:00 PM)
				: Email: samenev@				State: CA Zip: 9	. Special Instr	D18J041				Sample Description	Sample ID / Location									TE		
Instruction	Ā	<u> </u> C	j	leightongroup.com	100	δ		92614	uctions/Comments						Date	11/3/18					3		11/3/16			to the subcontract lab ask for quote war and soil camples will be disposed of will be disposed of after 14 calendar divorinc records maintained for fine (5) years of the contract of the contract feet. Liquid & soils samples: Complimentan lars and Raport Feet. Liquid & soils samples: Complimentan lars and seet. Liquid & soils samples: Complimentan younge for samples: Complimentan younge for samples: Complimentan younge for samples.
Instruction: Complete all shaded areas	Address: 17781 Cowar		ey: Uville	Attn: Accoun	Company: Leight	Address:		CITY: Irvine	ints:	(sap	Pestici	eníno.		S (bC		357	158	1.78 80	827	380	202	2	833 🗆	₹55 X		to the subcontract lab ask for quote. 6. Liquid and solid samples will be disposed of first 43 calendar days, from receil will be disposed of after 14 calendar days after receipt of samples. 7. Electronic records maintained for five (5) years from report date. 9. Storage and Report fews. 9. Storage and Report fews. 1. Graind 8. solid samples: Complimentary storage for forty-five (45) calendar samples, \$2,5 sample worth if stearfed storage or hold is requested. As ramples: Complimentary storage for ten (10) calendar days from receipt \$2,50 sample/week if services for ten (10) calendar days from receipt \$2,50 sample/week if services for ten (10) calendar days from receipt \$2,50 sample/week if services for its questions of the convergence of the convergenc
haded areas.	owan		SEND IN	Accounts Payable	Leighton Group	,	17781 Cowan		Rec			5	(O) (SB)	5 (GE 2 (DE 5 (DE	F08 108 108 108						1			**************************************		to the subcontract lab — ask for quote. 6. Liquid annigles while be disposed to after 45 calendar days from receipt of samples; air samples will be disposed of after 14 calendar days after receipt of samples. 7. Electronic records maintained for five [5] years from report date. 8. Had copy reports will be disposed of after 45 calendar days from report date. 9. Storage and Report Fees: Complimentary storage for forty-five (45) calendar days from receipt of samples 5. Stamples (32) camples from the feet of the feet
			SEND INVOICE TO:						Requested Analysi		3-C40)	y S ∋iiie	T) 000 801 0208 11747	0 / 7(enic 6 enic 6	F09 S9J S1A SMB	X	X			¥ +				1		of samples; air samples 1ays from receipt of t of samples; uested; \$50.00 per
Odleri.		State: CA		Email:			State:	CA	S	2.00	/250-5	10)0	No 'c		0/									1	3)	
4. SEALED	<u>.</u>	Zip: 92614 Fax:	ame as SEND REPORT	accipayahle@leightongroup.com			Zip: 03214	┢	Sample Matrix		x r Matri sM su	Mate wate		lect 2 lect / lect / lect 1	98 98										And Confermated Penaltri : \$35 per reprocessed EDD	regenerate/fortimated reports. 2x by the traperases uses. 10. Rush TCIP/STLE samples; and Edges to analysis TAT for extraction procedure. 11. Unanalyzed samples will finus a dispose the of 5 pres fample. 12. The aboratory will randomly select from all QC samples received the sample to spike for Matrix Spike/ 12. The aboratory will randomly select from all QC samples received the sample to spike for Matrix Spike Duplicate (MS/MSD) at no cost. However, if you want the laboratory to additionally perform MS/MSD on your sample, a charge will be assessed for the specific sample used.
	949-250-1421		<u>10</u> Epp	com CExcel	CEquis				Container	วบเสะา	r) əm nən=e	iT b ×vovs re⊃ ≈ ′	roun tity Tube: 2= Tedlar; 7	nrna neu meu meu meu meu	JT °										essed EDD.	extraction procedure. sample to service the sample to service the sample to waver. If you want the lat he assessed for the specified to service the service the service that service the se
			QA/QC	☐ Routine	☐ Legal ☐ RWOCB	level			ā	DOSZH=1	:EONH=	=HCF	ative: 1 Zn(Ac)Z;	V1989.	t bi	-	E									spike for Matr oratory to add ic sample used

Ydotsub

As the authorized agent of the company above, I hereby purchase aboratory services from AIL as shown above and hereby guarantee payment as quoted.

Jennifer Bobiwash **Printed Name**

Ime:

Date:

Received by: (Signature and Printed Name) Received by: (Signature and Printed Name)

Received by: (Signature and Printed

34C

Date: 11/3/18 Date:

elinquished by: (Signature and Printed Name) Jamifer Bobwash Relinquished by: (Signature and Plinted Name) telinquished by: (Signature and Printe

Time: /ひ々ら Time:

December 27, 2018

Ross Surrency Leighton Consulting, Inc. 17781 Cowan Street

Irvine, CA 92614
Tel: (949) 250-1421
Fax:(949) 757-7230

ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

Re: ATL Work Order Number: 1804912

Client Reference: LAUSD- Colfax ES, 11640.008

Enclosed are the results for sample(s) received on December 21, 2018 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PER1-SE2-0.5	1804912-01	Soil	12/21/18 8:12	12/21/18 10:10
PER1-S-0.5	1804912-03	Soil	12/21/18 8:27	12/21/18 10:10
PER1-SW2-0.5	1804912-05	Soil	12/21/18 8:41	12/21/18 10:10

CASE NARRATIVE

Results were J-flagged. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 12/27/2018

DETECTION SUMMARY

Client Sample ID PER1-SE2-0.5

Lab ID: 1804912-01

Organochlorine Pesticides by	EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane	2.9	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:23	
Chlordane [2C]	27	8.5	1.1	1	B8L0747	12/26/2018	12/26/18 15:23	
Dieldrin [2C]	6.4	2.0	0.26	1	B8L0747	12/26/2018	12/26/18 15:23	
gamma-Chlordane [2C]	1.9	1.0	0.89	1	B8L0747	12/26/2018	12/26/18 15:23	
Heptachlor epoxide [2C]	0.66	1.0	0.09	1	B8L0747	12/26/2018	12/26/18 15:23	J

Client Sample ID PER1-S-0.5

Lab ID: 1804912-03

Organochlorine Pesticides by	EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4′-DDE	5.9	2.0	0.11	1	B8L0747	12/26/2018	12/26/18 15:34	
4,4´-DDT	5.0	2.0	0.10	1	B8L0747	12/26/2018	12/26/18 15:34	
alpha-Chlordane	18	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:34	
Chlordane	180	8.5	1.1	1	B8L0747	12/26/2018	12/26/18 15:34	
Dieldrin	30	2.0	0.26	1	B8L0747	12/26/2018	12/26/18 15:34	
gamma-Chlordane	13	1.0	0.89	1	B8L0747	12/26/2018	12/26/18 15:34	
Heptachlor epoxide [2C]	3.1	1.0	0.09	1	B8L0747	12/26/2018	12/26/18 15:34	

Client Sample ID PER1-SW2-0.5

Lab ID: 1804912-05

Organochlorine Pesticides	by EPA 8081							Analyst: CO/
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane [2C]	320	10	1.2	10	B8L0747	12/26/2018	12/26/18 16:31	
Chlordane	2600	85	11	10	B8L0747	12/26/2018	12/26/18 16:31	
Dieldrin	70	20	2.6	10	B8L0747	12/26/2018	12/26/18 16:31	
gamma-Chlordane	190	10	8.9	10	B8L0747	12/26/2018	12/26/18 16:31	
Heptachlor epoxide	38	10	0.89	10	B8L0747	12/26/2018	12/26/18 16:31	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

Client Sample ID PER1-SE2-0.5 Lab ID: 1804912-01

Organochlorine Pesticides by EPA 8081

Analyst: CO/

organioeniorine restretues by Er								maryst. CC
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	0.07	1	B8L0747	12/26/2018	12/26/18 15:23	
4,4′-DDE	ND	2.0	0.11	1	B8L0747	12/26/2018	12/26/18 15:23	
4,4´-DDT	ND	2.0	0.10	1	B8L0747	12/26/2018	12/26/18 15:23	
Aldrin	ND	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:23	
alpha-BHC	ND	1.0	0.11	1	B8L0747	12/26/2018	12/26/18 15:23	
alpha-Chlordane	2.9	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:23	
beta-BHC	ND	1.0	0.06	1	B8L0747	12/26/2018	12/26/18 15:23	
Chlordane [2C]	27	8.5	1.1	1	B8L0747	12/26/2018	12/26/18 15:23	
delta-BHC	ND	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:23	
Dieldrin [2C]	6.4	2.0	0.26	1	B8L0747	12/26/2018	12/26/18 15:23	
Endosulfan I	ND	1.0	0.10	1	B8L0747	12/26/2018	12/26/18 15:23	
Endosulfan II	ND	2.0	0.15	1	B8L0747	12/26/2018	12/26/18 15:23	
Endosulfan sulfate	ND	2.0	0.16	1	B8L0747	12/26/2018	12/26/18 15:23	
Endrin	ND	2.0	0.14	1	B8L0747	12/26/2018	12/26/18 15:23	
Endrin aldehyde	ND	2.0	0.31	1	B8L0747	12/26/2018	12/26/18 15:23	
Endrin ketone	ND	2.0	0.13	1	B8L0747	12/26/2018	12/26/18 15:23	
gamma-BHC	ND	1.0	0.10	1	B8L0747	12/26/2018	12/26/18 15:23	
gamma-Chlordane [2C]	1.9	1.0	0.89	1	B8L0747	12/26/2018	12/26/18 15:23	
Heptachlor	ND	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:23	
Heptachlor epoxide [2C]	0.66	1.0	0.09	1	B8L0747	12/26/2018	12/26/18 15:23	J
Methoxychlor	ND	5.0	0.18	1	B8L0747	12/26/2018	12/26/18 15:23	
Toxaphene	ND	50	4.7	1	B8L0747	12/26/2018	12/26/18 15:23	
Surrogate: Decachlorobiphenyl [2C]	56.5 %	4.5	3 - 84		B8L0747	12/26/2018	12/26/18 15:23	
Surrogate: Tetrachloro-m-xylene	59.3 %	54	! - 118		B8L0747	12/26/2018	12/26/18 15:23	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

Client Sample ID PER1-S-0.5 Lab ID: 1804912-03

Organochlorine Pesticides by EPA 8081

Analyst: CO/

- 8								rinaryst: CO
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	0.07	1	B8L0747	12/26/2018	12/26/18 15:34	
4,4'-DDE	5.9	2.0	0.11	1	B8L0747	12/26/2018	12/26/18 15:34	
4,4'-DDT	5.0	2.0	0.10	1	B8L0747	12/26/2018	12/26/18 15:34	
Aldrin	ND	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:34	
alpha-BHC	ND	1.0	0.11	1	B8L0747	12/26/2018	12/26/18 15:34	
alpha-Chlordane	18	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:34	
beta-BHC	ND	1.0	0.06	1	B8L0747	12/26/2018	12/26/18 15:34	
Chlordane	180	8.5	1.1	1	B8L0747	12/26/2018	12/26/18 15:34	
delta-BHC	ND	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:34	
Dieldrin	30	2.0	0.26	1	B8L0747	12/26/2018	12/26/18 15:34	
Endosulfan I	ND	1.0	0.10	1	B8L0747	12/26/2018	12/26/18 15:34	
Endosulfan II	ND	2.0	0.15	1	B8L0747	12/26/2018	12/26/18 15:34	
Endosulfan sulfate	ND	2.0	0.16	1	B8L0747	12/26/2018	12/26/18 15:34	
Endrin	ND	2.0	0.14	1	B8L0747	12/26/2018	12/26/18 15:34	
Endrin aldehyde	ND	2.0	0.31	1	B8L0747	12/26/2018	12/26/18 15:34	
Endrin ketone	ND	2.0	0.13	1	B8L0747	12/26/2018	12/26/18 15:34	
gamma-BHC	ND	1.0	0.10	1	B8L0747	12/26/2018	12/26/18 15:34	
gamma-Chlordane	13	1.0	0.89	1	B8L0747	12/26/2018	12/26/18 15:34	
Heptachlor	ND	1.0	0.12	1	B8L0747	12/26/2018	12/26/18 15:34	
Heptachlor epoxide [2C]	3.1	1.0	0.09	1	B8L0747	12/26/2018	12/26/18 15:34	
Methoxychlor	ND	5.0	0.18	1	B8L0747	12/26/2018	12/26/18 15:34	
Toxaphene	ND	50	4.7	1	B8L0747	12/26/2018	12/26/18 15:34	
Surrogate: Decachlorobiphenyl [2C]	65.4 %	43	3 - 84		B8L0747	12/26/2018	12/26/18 15:34	
Surrogate: Tetrachloro-m-xylene	71.6 %	54	! - 118		B8L0747	12/26/2018	12/26/18 15:34	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 12/27/2018

Client Sample ID PER1-SW2-0.5 Lab ID: 1804912-05

Organochlorine Pesticides by EPA 8081

Analyst: CO/

- 8								rmaryst. Co
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	20	0.70	10	B8L0747	12/26/2018	12/26/18 16:31	
4,4'-DDE	ND	20	1.1	10	B8L0747	12/26/2018	12/26/18 16:31	
4,4'-DDT	ND	20	1.0	10	B8L0747	12/26/2018	12/26/18 16:31	
Aldrin	ND	10	1.2	10	B8L0747	12/26/2018	12/26/18 16:31	
alpha-BHC	ND	10	1.1	10	B8L0747	12/26/2018	12/26/18 16:31	
alpha-Chlordane [2C]	320	10	1.2	10	B8L0747	12/26/2018	12/26/18 16:31	
beta-BHC	ND	10	0.60	10	B8L0747	12/26/2018	12/26/18 16:31	
Chlordane	2600	85	11	10	B8L0747	12/26/2018	12/26/18 16:31	
delta-BHC	ND	10	1.2	10	B8L0747	12/26/2018	12/26/18 16:31	
Dieldrin	70	20	2.6	10	B8L0747	12/26/2018	12/26/18 16:31	
Endosulfan I	ND	10	1.0	10	B8L0747	12/26/2018	12/26/18 16:31	
Endosulfan II	ND	20	1.5	10	B8L0747	12/26/2018	12/26/18 16:31	
Endosulfan sulfate	ND	20	1.6	10	B8L0747	12/26/2018	12/26/18 16:31	
Endrin	ND	20	1.4	10	B8L0747	12/26/2018	12/26/18 16:31	
Endrin aldehyde	ND	20	3.1	10	B8L0747	12/26/2018	12/26/18 16:31	
Endrin ketone	ND	20	1.3	10	B8L0747	12/26/2018	12/26/18 16:31	
gamma-BHC	ND	10	1.0	10	B8L0747	12/26/2018	12/26/18 16:31	
gamma-Chlordane	190	10	8.9	10	B8L0747	12/26/2018	12/26/18 16:31	
Heptachlor	ND	10	1.2	10	B8L0747	12/26/2018	12/26/18 16:31	
Heptachlor epoxide	38	10	0.89	10	B8L0747	12/26/2018	12/26/18 16:31	
Methoxychlor	ND	50	1.8	10	B8L0747	12/26/2018	12/26/18 16:31	
Toxaphene	ND	500	47	10	B8L0747	12/26/2018	12/26/18 16:31	
Surrogate: Decachlorobiphenyl [2C]	68.9 %	4.	3 - 84		B8L0747	12/26/2018	12/26/18 16:31	
Surrogate: Tetrachloro-m-xylene	70.7 %	54	4 - 118		B8L0747	12/26/2018	12/26/18 16:31	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

QUALITY CONTROL SECTION

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Datab DOI 0747 CCCEMI P										
Batch B8L0747 - GCSEMI_P	CD/FESI_S									
Blank (B8L0747-BLK1)					Preparec	1: 12/26/2018.	Analyzed: 12/2	26/2018		
4,4'-DDD	ND	2.0	0.07							
4,4'-DDD [2C]	ND	2.0	0.07							
4,4'-DDE	ND	2.0	0.11							
4,4'-DDE [2C]	ND	2.0	0.11							
4,4'-DDT	ND	2.0	0.10							
4,4'-DDT [2C]	ND	2.0	0.10							
Aldrin	ND	1.0	0.12							
Aldrin [2C]	ND	1.0	0.12							
alpha-BHC	ND	1.0	0.11							
alpha-BHC [2C]	ND	1.0	0.11							
alpha-Chlordane	ND	1.0	0.12							
alpha-Chlordane [2C]	ND	1.0	0.12							
beta-BHC	ND	1.0	0.06							
beta-BHC [2C]	ND	1.0	0.06							
Chlordane	ND	8.5	1.1							
Chlordane [2C]	ND	8.5	1.1							
delta-BHC	ND	1.0	0.12							
delta-BHC [2C]	ND	1.0	0.12							
Dieldrin	ND	2.0	0.26							
Dieldrin [2C]	ND	2.0	0.26							
Endosulfan I	ND	1.0	0.10							
Endosulfan I [2C]	ND	1.0	0.10							
Endosulfan II	ND	2.0	0.15							
Endosulfan II [2C]	ND	2.0	0.15							
Endosulfan sulfate	ND	2.0	0.16							
Endosulfan Sulfate [2C]	ND	2.0	0.16							
Endrin	ND	2.0	0.14							
Endrin [2C]	ND	2.0	0.14							
Endrin aldehyde	ND	2.0	0.31							
Endrin aldehyde [2C]	ND	2.0	0.31							
Endrin ketone	ND	2.0	0.13							
Endrin ketone [2C]	ND	2.0	0.13							
gamma-BHC	ND	1.0	0.10							
gamma-BHC [2C]	ND	1.0	0.10							
gamma-Chlordane	ND	1.0	0.89							
gamma-Chlordane [2C]	ND	1.0	0.89							
Heptachlor	ND	1.0	0.12							
Heptachlor [2C]	ND	1.0	0.12							
Heptachlor epoxide	ND	1.0	0.09							
		-								

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
		_								
Batch B8L0747 - GCSEMI_PCI	B/PEST_S (co	ntinued)								
Blank (B8L0747-BLK1) - Continue	ed				Prepared	d: 12/26/2018	Analyzed: 12/2	26/2018		
leptachlor epoxide [2C]	ND	1.0	0.09							
Methoxychlor	ND	5.0	0.18							
Methoxychlor [2C]	ND	5.0	0.18							
Coxaphene	ND	50	4.7							
oxaphene [2C]	ND	50	4.7							
Surrogate: Decachlorobiphenyl	12.30			16.6667		73.8	43 - 84			
Surrogate: Decachlorobiphenyl [9.303			16.6667		55.8	43 - 84			
Surrogate: Tetrachloro-m-xylene	13.14			16.6667		78.9	54 - 118			
Surrogate: Tetrachloro-m-xylene	13.82			16.6667		82.9	54 - 118			
LCS (B8L0747-BS1)					Prepared	d: 12/26/2018	Analyzed: 12/2	26/2018		
,4′-DDD	16.2990	2.0	0.07	16.6667		97.8	73 - 110			
,4'-DDD [2C]	14.7428	2.0	0.07	16.6667		88.5	73 - 110			
,4′-DDE	16.1233	2.0	0.11	16.6667		96.7	71 - 99			
4'-DDE [2C]	14.4622	2.0	0.11	16.6667		86.8	71 - 99			
4'-DDT	13.4623	2.0	0.10	16.6667		80.8	51 - 106			
4'-DDT [2C]	14.3267	2.0	0.10	16.6667		86.0	51 - 106			
ldrin	14.0992	1.0	0.12	16.6667		84.6	67 - 95			
ldrin [2C]	12.9605	1.0	0.12	16.6667		77.8	67 - 95			
lpha-BHC	14.9648	1.0	0.11	16.6667		89.8	67 - 94			
lpha-BHC [2C]	13.1625	1.0	0.11	16.6667		79.0	67 - 94			
lpha-Chlordane	15.3452	1.0	0.12	16.6667		92.1	69 - 99			
lpha-Chlordane [2C]	12.9402	1.0	0.12	16.6667		77.6	69 - 99			
eta-BHC	15.8093	1.0	0.06	16.6667		94.9	67 - 99			
eta-BHC [2C]	14.0820	1.0	0.06	16.6667		84.5	67 - 99			
elta-BHC	15.9018	1.0	0.12	16.6667		95.4	73 - 103			
elta-BHC [2C]	15.0855	1.0	0.12	16.6667		90.5	73 - 103			
rieldrin	14.5963	2.0	0.26	16.6667		87.6	65 - 93			
ieldrin [2C]	12.5000	2.0	0.26	16.6667		75.0	65 - 93			
ndosulfan I	13.8935	1.0	0.10	16.6667		83.4	65 - 91			
ndosulfan I [2C]	11.4357	1.0	0.10	16.6667		68.6	65 - 91			
ndosulfan II	15.2102	2.0	0.15	16.6667		91.3	65 - 102			
ndosulfan II [2C]	13.7330	2.0	0.15	16.6667		82.4	65 - 102			
ndosulfan sulfate	15.6455	2.0	0.16	16.6667		93.9	64 - 106			
ndosulfan Sulfate [2C]	12.6860	2.0	0.16	16.6667		76.1	64 - 106			
ndrin	16.6870	2.0	0.14	16.6667		100	64 - 111			
ndrin [2C]	14.0988	2.0	0.14	16.6667		84.6	64 - 111			
ndrin aldehyde	14.5242	2.0	0.31	16.6667		87.1	64 - 109			
ndrin aldehyde [2C]	9.60917	2.0	0.31	16.6667		57.7	64 - 109			L4
ndrin ketone	13.7792	2.0	0.13	16.6667		82.7	57 - 101			
ndrin ketone [2C]	13.6128	2.0	0.13	16.6667		81.7	57 - 101			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8L0747 - GCSEMI_PCI	B/PEST S (ac	ntinued)								
LCS (B8L0747-BS1) - Continued	G, 1 EB 1_B (CO	nucu)			Prenared	d: 12/26/2018	Analyzed: 12/2	26/2018		
· · · · · · · · · · · · · · · · · · ·	12 0070	1.0	0.10	16 6667	Treparet		•	20/2010		
gamma-BHC	13.9870	1.0	0.10	16.6667		83.9	65 - 96			
gamma-BHC [2C]	12.6672	1.0	0.10	16.6667		76.0	65 - 96 65 - 113			
gamma-Chlordane gamma-Chlordane [2C]	18.8218 12.3777	1.0 1.0	0.89 0.89	16.6667 16.6667		113 74.3	65 - 113 65 - 113			
Heptachlor	14.3947	1.0	0.89	16.6667		74.3 86.4	61 - 96			
Heptachlor [2C]	13.0073	1.0	0.12	16.6667		78.0	61 - 96			
Heptachlor [2C] Heptachlor epoxide	13.9403	1.0	0.12	16.6667		83.6	64 - 89			
Heptachlor epoxide [2C]	12.2378	1.0	0.09	16.6667		73.4	64 - 89			
Methoxychlor	15.7358	5.0	0.09	16.6667		73.4 94.4	67 - 109			
Methoxychlor [2C]	14.2280	5.0	0.18	16.6667		85.4	67 - 109			
		3.0	0.10							
Surrogate: Decachlorobiphenyl	10.25 9.685			16.6667 16.6667		61.5 58.1	43 - 84 43 - 84			
Surrogate: Decachlorobiphenyl [9.683 12.95			16.6667		38.1 77.7	43 - 84 54 - 118			
Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene	12.93 13.23			16.6667		77.7 79.4	54 - 118 54 - 118			
surroguie. 1etracnioro-m-xytene	13.23			10.000/		19.4	J4 - 110			
Duplicate (B8L0747-DUP1)		S	ource: 18049	012-05	Prepared	d: 12/26/2018	Analyzed: 12/2	27/2018		
,4′-DDD	ND	20	0.70		ND				20	
,4′-DDD [2C]	ND	20	0.70		ND				20	
,4′-DDE	ND	20	1.1		ND				20	
,4′-DDE [2C]	ND	20	1.1		ND				20	
-,4′-DDT	ND	20	1.0		ND				20	
4,4'-DDT [2C]	ND	20	1.0		ND				20	
Aldrin	ND	10	1.2		ND				20	
Aldrin [2C]	ND	10	1.2		ND				20	
lpha-BHC	ND	10	1.1		ND				20	
lpha-BHC [2C]	ND	10	1.1		ND				20	
lpha-Chlordane	379.072	10	1.2		378.652			0.111	20	
lpha-Chlordane [2C]	459.703	10	1.2		315.943			37.1	20	R3
eta-BHC	ND	10	0.60		ND				20	
eta-BHC [2C]	ND	10	0.60		ND				20	
lelta-BHC	ND	10	1.2		ND				20	
lelta-BHC [2C]	ND	10	1.2		ND			2.00	20	
Dieldrin	68.1950	20	2.6		70.2750			3.00	20	
Dieldrin [2C]	65.8400	20	2.6		65.6383			0.307	20	
ndosulfan I	ND	10	1.0		ND				20	
Endosulfan I [2C]	ND	10	1.0		ND				20	
Endosulfan II	ND	20	1.5		ND				20	
indosulfan II [2C]	ND	20	1.5		ND				20	
indosulfan sulfate	ND	20	1.6		ND				20	
Indosulfan Sulfate [2C]	ND	20	1.6		ND				20	
Endrin	ND	20	1.4		ND				20	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8L0747 - GCSEMI_PC	B/PEST_S (co	ntinued)								
Duplicate (B8L0747-DUP1) - Cont	inued	Se	ource: 18049	12-05	Prepared:	: 12/26/2018	Analyzed: 12/2	27/2018		
Endrin [2C]	ND	20	1.4		ND				20	
Endrin aldehyde	ND	20	3.1		ND				20	
Endrin aldehyde [2C]	ND	20	3.1		ND				20	
Endrin ketone	ND	20	1.3		ND				20	
Endrin ketone [2C]	ND	20	1.3		ND				20	
gamma-BHC	ND	10	1.0		ND				20	
gamma-BHC [2C]	ND	10	1.0		ND				20	
gamma-Chlordane	173.037	10	8.9		186.035			7.24	20	
gamma-Chlordane [2C]	131.637	10	8.9		146.612			10.8	20	
Heptachlor	ND	10	1.2		ND			NR	20	
Heptachlor [2C]	ND	10	1.2		ND			NR	20	
Heptachlor epoxide	26.4483	10	0.89		37.8233			35.4	20	R3
Heptachlor epoxide [2C]	31.3867	10	0.89		36.8967			16.1	20	
Methoxychlor	ND	50	1.8		ND				20	
Methoxychlor [2C]	ND	50	1.8		ND				20	
Surrogate: Decachlorobiphenyl	12.71			16.6667		76.2	43 - 84			
Surrogate: Decachlorobiphenyl [14.04			16.6667		84.3	43 - 84			S10
Surrogate: Tetrachloro-m-xylene	11.77			16.6667		70.6	54 - 118			
Surrogate: Tetrachloro-m-xylene	11.05			16.6667		66.3	54 - 118			
Matrix Spike (B8L0747-MS1)		Se	ource: 18049	12-01	Prepared:	: 12/26/2018	Analyzed: 12/2	26/2018		
4,4′-DDD	15.8255	2.0	0.07	16.6667	ND	95.0	73 - 110			
1,4'-DDD [2C]	14.3878	2.0	0.07	16.6667	ND	86.3	73 - 110			
1,4′-DDE	17.8575	2.0	0.11	16.6667	ND	107	71 - 99			M2
1,4'-DDE [2C]	11.3972	2.0	0.11	16.6667	ND	68.4	71 - 99			M2
1,4′-DDT	15.9515	2.0	0.10	16.6667	ND	95.7	51 - 106			
4,4′-DDT [2C]	12.6503	2.0	0.10	16.6667	ND	75.9	51 - 106			
Aldrin	13.6953	1.0	0.12	16.6667	ND	82.2	67 - 95			
Aldrin [2C]	10.4535	1.0	0.12	16.6667	ND	62.7	67 - 95			M2
lpha-BHC	14.4035	1.0	0.11	16.6667	ND	86.4	67 - 94			
lpha-BHC [2C]	12.0957	1.0	0.11	16.6667	ND	72.6	67 - 94			
lpha-Chlordane	21.5322	1.0	0.12	16.6667	2.91317	112	69 - 99			M2
lpha-Chlordane [2C]	30.0100	1.0	0.12	16.6667	10.2552	119	69 - 99			M2
peta-BHC	15.1140	1.0	0.06	16.6667	ND	90.7	67 - 99			
oeta-BHC [2C]	13.1360	1.0	0.06	16.6667	ND	78.8	67 - 99			
lelta-BHC	14.0487	1.0	0.12	16.6667	ND	84.3	73 - 103			
lelta-BHC [2C]	12.2622	1.0	0.12	16.6667	ND	73.6	73 - 103			
Dieldrin	26.5545	2.0	0.26	16.6667	6.40617	121	65 - 93			M2
Dieldrin [2C]	26.7927	2.0	0.26	16.6667	6.44633	122	65 - 93			M2
Endosulfan I	19.0825	1.0	0.10	16.6667	ND	114	65 - 91			M2
Endosulfan I [2C]	10.0850	1.0	0.10	16.6667	ND	60.5	65 - 91			M2

delta-BHC

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
O A L DOLOGAN COCCENT POR	D/DECTE C /	. · · · · · · · · · · · · · · · · · · ·								
Batch B8L0747 - GCSEMI_PCI	B/PEST_S (co	ntinued)								
Matrix Spike (B8L0747-MS1) - Co	ntinued	So	ource: 18049	12-01	Prepared	: 12/26/2018	Analyzed: 12/2	26/2018		
ndosulfan II	15.8923	2.0	0.15	16.6667	ND	95.4	65 - 102			
Endosulfan II [2C]	11.1937	2.0	0.15	16.6667	ND	67.2	65 - 102			
Endosulfan sulfate	13.2123	2.0	0.16	16.6667	ND	79.3	64 - 106			
ndosulfan Sulfate [2C]	10.7497	2.0	0.16	16.6667	ND	64.5	64 - 106			
ndrin	16.8110	2.0	0.14	16.6667	ND	101	64 - 111			
ndrin [2C]	12.1573	2.0	0.14	16.6667	ND	72.9	64 - 111			
ndrin aldehyde	16.1817	2.0	0.31	16.6667	ND	97.1	64 - 109			
ndrin aldehyde [2C]	9.44967	2.0	0.31	16.6667	ND	56.7	64 - 109			M2
ndrin ketone	12.3915	2.0	0.13	16.6667	ND	74.3	57 - 101			
Indrin ketone [2C]	11.9710	2.0	0.13	16.6667	ND	71.8	57 - 101			
amma-BHC	13.4815	1.0	0.10	16.6667	ND	80.9	65 - 96			
amma-BHC [2C]	12.1887	1.0	0.10	16.6667	ND	73.1	65 - 96			
amma-Chlordane	26.3907	1.0	0.89	16.6667	6.95667	117	65 - 113			M2
amma-Chlordane [2C]	14.0157	1.0	0.89	16.6667	1.86200	72.9	65 - 113			
eptachlor	12.2212	1.0	0.12	16.6667	ND	73.3	61 - 96			
eptachlor [2C]	11.5670	1.0	0.12	16.6667	ND	69.4	61 - 96			
eptachlor epoxide	13.5093	1.0	0.09	16.6667	0.549333	77.8	64 - 89			
eptachlor epoxide [2C]	11.8483	1.0	0.09	16.6667	0.655833	67.2	64 - 89			
Methoxychlor	12.5665	5.0	0.18	16.6667	ND	75.4	67 - 109			
fethoxychlor [2C]	12.3915	5.0	0.18	16.6667	ND	74.3	67 - 109			
Surrogate: Decachlorobiphenyl	11.33			16.6667		68.0	43 - 84			
Surrogate: Decachlorobiphenyl [11.11			16.6667		66.7	43 - 84			
Surrogate: Tetrachloro-m-xylene	11.48			16.6667		68.9	54 - 118			
Surrogate: Tetrachloro-m-xylene	9.925			16.6667		59.5	54 - 118			
Matrix Spike Dup (B8L0747-MSD)	1)	Se	ource: 18049	012-01	Prepared	: 12/26/2018	Analyzed: 12/2	26/2018		
,4′-DDD	16.1912	2.0	0.07	16.6667	ND	97.1	73 - 110	2.28	20	
,4′-DDD [2C]	15.1260	2.0	0.07	16.6667	ND	90.8	73 - 110	5.00	20	
4'-DDE	18.4702	2.0	0.11	16.6667	ND	111	71 - 99	3.37	20	M2
,4′-DDE [2C]	10.9848	2.0	0.11	16.6667	ND	65.9	71 - 99	3.68	20	M2
,4'-DDT	15.5380	2.0	0.10	16.6667	ND	93.2	51 - 106	2.63	20	
,4'-DDT [2C]	11.5427	2.0	0.10	16.6667	ND	69.3	51 - 106	9.16	20	
ldrin	15.8387	1.0	0.12	16.6667	ND	95.0	67 - 95	14.5	20	M2
ldrin [2C]	9.91200	1.0	0.12	16.6667	ND	59.5	67 - 95	5.32	20	M2
pha-BHC	14.6942	1.0	0.11	16.6667	ND	88.2	67 - 94	2.00	20	
pha-BHC [2C]	11.6163	1.0	0.11	16.6667	ND	69.7	67 - 94	4.04	20	
pha-Chlordane	20.7577	1.0	0.12	16.6667	2.91317	107	69 - 99	3.66	20	M2
pha-Chlordane [2C]	28.8372	1.0	0.12	16.6667	10.2552	111	69 - 99	3.99	20	M2
eta-BHC	14.2378	1.0	0.06	16.6667	ND	85.4	67 - 99	5.97	20	-
eta-BHC [2C]	12.3852	1.0	0.06	16.6667	ND	74.3	67 - 99	5.88	20	
Late DIC	14.1042	1.0	0.00	16.6667	ND	95.3	72 102	1.02	20	

16.6667

ND

85.2

73 - 103

1.03

20

0.12

14.1942

1.0

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B8L0747 - GCSEMI_PCI	B/PEST_S (con	tinued)								
Matrix Spike Dup (B8L0747-MSD)	l) - Continued	Source: 1804912-01			Prepared: 12/26/2018 Analyzed: 12/26/2018					
delta-BHC [2C]	11.6720	1.0	0.12	16.6667	ND	70.0	73 - 103	4.93	20	M2
Dieldrin	26.3237	2.0	0.26	16.6667	6.40617	120	65 - 93	0.873	20	M2
Dieldrin [2C]	26.2323	2.0	0.26	16.6667	6.44633	119	65 - 93	2.11	20	M2
Endosulfan I	18.9755	1.0	0.10	16.6667	ND	114	65 - 91	0.562	20	M2
Endosulfan I [2C]	9.59583	1.0	0.10	16.6667	ND	57.6	65 - 91	4.97	20	M2
Endosulfan II	15.9850	2.0	0.15	16.6667	ND	95.9	65 - 102	0.581	20	
Endosulfan II [2C]	10.6967	2.0	0.15	16.6667	ND	64.2	65 - 102	4.54	20	M2
Endosulfan sulfate	11.8220	2.0	0.16	16.6667	ND	70.9	64 - 106	11.1	20	
Endosulfan Sulfate [2C]	10.2038	2.0	0.16	16.6667	ND	61.2	64 - 106	5.21	20	M2
Endrin	13.4357	2.0	0.14	16.6667	ND	80.6	64 - 111	22.3	20	R3
Endrin [2C]	10.6065	2.0	0.14	16.6667	ND	63.6	64 - 111	13.6	20	M2
Endrin aldehyde	12.8515	2.0	0.31	16.6667	ND	77.1	64 - 109	22.9	20	R3
Endrin aldehyde [2C]	7.92283	2.0	0.31	16.6667	ND	47.5	64 - 109	17.6	20	M2
Endrin ketone	11.8942	2.0	0.13	16.6667	ND	71.4	57 - 101	4.10	20	
Endrin ketone [2C]	10.4962	2.0	0.13	16.6667	ND	63.0	57 - 101	13.1	20	
gamma-BHC	13.0690	1.0	0.10	16.6667	ND	78.4	65 - 96	3.11	20	
gamma-BHC [2C]	11.6312	1.0	0.10	16.6667	ND	69.8	65 - 96	4.68	20	
gamma-Chlordane	26.7828	1.0	0.89	16.6667	6.95667	119	65 - 113	1.48	20	M2
gamma-Chlordane [2C]	13.7287	1.0	0.89	16.6667	1.86200	71.2	65 - 113	2.07	20	
Heptachlor	12.0550	1.0	0.12	16.6667	ND	72.3	61 - 96	1.37	20	
Heptachlor [2C]	11.0660	1.0	0.12	16.6667	ND	66.4	61 - 96	4.43	20	
Heptachlor epoxide	14.7902	1.0	0.09	16.6667	0.549333	85.4	64 - 89	9.05	20	
Heptachlor epoxide [2C]	11.4040	1.0	0.09	16.6667	0.655833	64.5	64 - 89	3.82	20	
Methoxychlor	12.1490	5.0	0.18	16.6667	ND	72.9	67 - 109	3.38	20	
Methoxychlor [2C]	11.1383	5.0	0.18	16.6667	ND	66.8	67 - 109	10.7	20	M2
Surrogate: Decachlorobiphenyl	10.66			16.6667		64.0	43 - 84			
Surrogate: Decachlorobiphenyl [10.49			16.6667		62.9	43 - 84			
Surrogate: Tetrachloro-m-xylene	10.65			16.6667		63.9	54 - 118			
Surrogate: Tetrachloro-m-xylene	9.728			16.6667		58.4	54 - 118			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 12/27/2018

Notes and Definitions

S10	Surrogate recovery	was outside of laboratory	acceptance limit due to	possible matrix interference.

R3 RPD value outside acceptance criteria. Calculation is based on raw values. The analytical batch was validated by the Laboratory Control

Sample (LCS).

M2 Matrix spike recovery outside of acceptance limit due to possible matrix interference. The analytical batch was validated by the laboratory

control sample.

L4 Laboratory Control Sample outside of control limit but within Marginal Exceedance (ME) limit.

J Analyte detected below the Practical Quantitation Limit but above or equal to the Method Detection Limit. Result is an estimated

concentration.

ND Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL,

analyte is not detected at or above the Method Detection Limit (MDL)

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)

OR1 OR-NELAP (OSPHL)

Notes:

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
- (3) Results are wet unless otherwise specified.

CHAIN OF CUSTODY RECORD

Page 1 of 1

		For Laboratory U	se Onl	<i>y</i>	ATLCOC Ver:201	803	21
	- f T	San	nple Cor	ditic	ns Upon Receipt		
Method	of Transport	Condition	Υ	a	Condition	Y	Z
Client	☐ ATL	1. CHILLED	Ø		5. # OF SAMPLES MATCH COC	Ø	
FedEx	OnTrac	2. HEADSPACE (VOA)			6. PRESERVED		
GSO		3. CONTAINER INTACT	Ø		7. COOLER TEMP, deg C:	3	
Other:		4. SEALED			(

3275 Walnut Ave., Signal Hill, CA 90755 Tel: (562) 989-4045 ● Fax: (562) 989-4040

CUSTOMER

SAMPLES

PROJECT

Σ

0

4. Weekend, holiday, after-hours work --- ask for quote.

Relinguished by: (Signature and Printed Name

Relinquished by: (Signature and Printed Name)

5. Subcontract TAT is 10 - 15 business days. Projects requiring shorter TATs will incur a surcharge respective

Date:

Date:

Time:

19

Instruction: Complete all shaded areas. Tel: 949-250-1421 Company: Address: 17781 Cowan Leighton Consulting State: CA Zip: 92614 City: Fax: Irvine SEND REPORT TO: SEND INVOICE TO: same as SEND REPORT TO **EDD** QA/QC Attn: Attn: C Excel ☑ Routine rsurrency@leightongroup.com acctpayable@leightongroup.com Ross Surrency Accounts Payable CEDE □ Caltrans Company: Company: **C** Equis Leighton Consulting Leighton Group ☐ Legal □ RWQCB Address: Address: 17781 Cowan 17781 Cowan ☐ Level IV State: CA City: Zip: 92614 City: State: Zip: 92614 CA Irvine Irvine Special Instructions/Comments: Project Name: Quote #: Requested Analysis Sample Matrix Container LAUSD - Colfax ES D18J041 8015 Project No.: Wastewater Matrix (C13-C40) 11640.008 PO #: **Turnaround Time** Sampler: Select Solid Matrix 8081 (Organochlor Mercury 7471A TPH-DRO, ORO Select Analysis Select Analysis Arsenic 6020 Lead 6010B 8015 (GRO) Quantity Remarls Sample Description ITEM Laboratory ID 8082 ((For Lab Use Only) Sample ID / Location Date Time 12/21/18/08/12 1 1804912 -01 08 15 2 -07 -5-0.5 3 -03 -04 -SWZ-0.5 5 0841 -05 ERI - SWZ-10 6 0955 -06 8 9 10 1. Sample receiving hours: 7:30 AM to 7:30 PM Monday - Friday; Saturday 8:00 AM to 12:00 PM. to the subcontract lab --- ask for quote. regenerated/reformatted report; \$35 per reprocessed EDD. 2. Samples submitted AFTER 3:00 PM are considered received the following business day at 8:00 AM. 6. Liquid and solid samples will be disposed of after 45 calendar days from receipt of samples; air samples 10. Rush TCLP/STLC samples: add 2 days to analysis TAT for extraction procedure. 3. The following turnaround time conditions apply: 11. Unanalyzed samples will incur a disposal fee of \$7 per sample. will be disposed of after 14 calendar days after receipt of samples 12. The laboratory will randomly select from all QC samples received the sample to spike for Matrix Spike/ TAT = 0: 300% Surcharge SAME BUSINESS DAY if received by 9:00 AM 7. Electronic records maintained for five (5) years from report date. Matrix Spike Duplicate (MS/MSD) at no cost. However, if you want the laboratory to additionally TAT = 1: 100% Surcharge NEXT BUSINESS DAY (COB 5:00 PM) 8. Hard copy reports will be disposed of after 45 calendar days from report date. perform MS/MSD on your sample, a charge will be assessed for the specific sample used. TAT = 2:50% Surcharge 2ND BUSINESS DAY (COB 5:00 PM) 9. Storage and Report Fees: TAT = 3: 30% Surcharge 3RD BUSINESS DAY (COB 5:00 PM) · Liquid & solid samples: Complimentary storage for forty-five (45) calendar days from receipt of TAT = 4: 20% Surcharge 4TH BUSINESS DAY (COB 5:00 PM) samples; \$2/sample/month if extended storage or hold is requested. TAT = 5: NO SURCHARGE 5th BUSINESS DAY (COB 5:00 PM) Air samples: Complimentary storage for ten (10) calendar days from receipt of samples;

\$20 sample/week if extended storage is requested.

gnature and Printed Name

Received by: (Signature and Printed Name)

lard copy and regenerated reports/EDDs: \$17.50 per hard copy report requested; \$50.00 per

Date:

Time: 10/0

Time:

Time:

As the authorized agent of the company above, I hereby purchase laboratory services from ATL as shown above and hereby guarantee payment as quoted.

Wenix C. Hall

January 02, 2019

Ross Surrency Leighton Consulting, Inc.

17781 Cowan Street Irvine, CA 92614 Tel: (949) 250-1421

Fax:(949) 757-7230

ELAP No.: 1838 CSDLAC No.: 10196 ORELAP No.: CA300003

Re: ATL Work Order Number: 1804912

Client Reference: LAUSD- Colfax ES, 11640.008

Enclosed are the results for sample(s) received on December 21, 2018 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Eddie Rodriguez

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

 $17781 \ Cowan \ Street \\ Irvine \, , CA \, 92614 \\ Report To: Ross \ Surrency \\ Reported: 01/02/2019$

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PER1-SW2-1.0	1804912-06	Soil	12/21/18 8:55	12/21/18 10:10

CASE NARRATIVE

Results were J-flagged. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

DETECTION SUMMARY

Client Sample ID PER1-SW2-1.0 Lab ID: 1804912-06

Organochlorine Pesticides by EPA 8081

A 1		α
Analy	vet•	(()
ANIIGHT	/ Dt.	\sim

Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
alpha-Chlordane	63	5.0	0.59	5	B9A0010	12/31/2018	01/02/19 11:39	
Chlordane	440	42	5.5	5	B9A0010	12/31/2018	01/02/19 11:39	
Dieldrin	12	10	1.3	5	B9A0010	12/31/2018	01/02/19 11:39	
gamma-Chlordane [2C]	40	5.0	4.4	5	B9A0010	12/31/2018	01/02/19 11:39	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 01/02/2019

Client Sample ID PER1-SW2-1.0 Lab ID: 1804912-06

Organochlorine Pesticides by EPA 8081

Analyst: CO

organiorine restretaes by r								maryst. C
Analyte	Result (ug/kg)	PQL (ug/kg)	MDL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	10	0.35	5	B9A0010	12/31/2018	01/02/19 11:39	
4,4′-DDE	ND	10	0.54	5	B9A0010	12/31/2018	01/02/19 11:39	
4,4′-DDT	ND	10	0.50	5	B9A0010	12/31/2018	01/02/19 11:39	
Aldrin	ND	5.0	0.62	5	B9A0010	12/31/2018	01/02/19 11:39	
alpha-BHC	ND	5.0	0.53	5	B9A0010	12/31/2018	01/02/19 11:39	
alpha-Chlordane	63	5.0	0.59	5	B9A0010	12/31/2018	01/02/19 11:39	
beta-BHC	ND	5.0	0.30	5	B9A0010	12/31/2018	01/02/19 11:39	
Chlordane	440	42	5.5	5	B9A0010	12/31/2018	01/02/19 11:39	
delta-BHC	ND	5.0	0.62	5	B9A0010	12/31/2018	01/02/19 11:39	
Dieldrin	12	10	1.3	5	B9A0010	12/31/2018	01/02/19 11:39	
Endosulfan I	ND	5.0	0.50	5	B9A0010	12/31/2018	01/02/19 11:39	
Endosulfan II	ND	10	0.77	5	B9A0010	12/31/2018	01/02/19 11:39	
Endosulfan sulfate	ND	10	0.80	5	B9A0010	12/31/2018	01/02/19 11:39	
Endrin	ND	10	0.68	5	B9A0010	12/31/2018	01/02/19 11:39	
Endrin aldehyde	ND	10	1.6	5	B9A0010	12/31/2018	01/02/19 11:39	
Endrin ketone	ND	10	0.63	5	B9A0010	12/31/2018	01/02/19 11:39	
gamma-BHC	ND	5.0	0.52	5	B9A0010	12/31/2018	01/02/19 11:39	
gamma-Chlordane [2C]	40	5.0	4.4	5	B9A0010	12/31/2018	01/02/19 11:39	
Heptachlor	ND	5.0	0.59	5	B9A0010	12/31/2018	01/02/19 11:39	
Heptachlor epoxide	ND	5.0	0.44	5	B9A0010	12/31/2018	01/02/19 11:39	
Methoxychlor	ND	25	0.89	5	B9A0010	12/31/2018	01/02/19 11:39	
Toxaphene	ND	250	23	5	B9A0010	12/31/2018	01/02/19 11:39	
Surrogate: Decachlorobiphenyl	64.3 %	4.	3 - 84		B9A0010	12/31/2018	01/02/19 11:39	
Surrogate: Tetrachloro-m-xylene	72.5 %	54	! - 118		B9A0010	12/31/2018	01/02/19 11:39	

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine , CA 92614 Reported: 01/02/2019

QUALITY CONTROL SECTION

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
nalyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
ntch B9A0010 - GCSEMI_PC	B/PEST_S									
ank (B9A0010-BLK1)					Prepared	1: 12/31/2018	Analyzed: 1/2/2	2019		
-DDD	ND	2.0	0.07							
'-DDD [2C]	ND	2.0	0.07							
'-DDE	ND	2.0	0.11							
'-DDE [2C]	ND	2.0	0.11							
'-DDT	ND	2.0	0.10							
'-DDT [2C]	ND	2.0	0.10							
lrin	ND	1.0	0.12							
lrin [2C]	ND	1.0	0.12							
ha-BHC	ND	1.0	0.11							
ha-BHC [2C]	ND	1.0	0.11							
ha-Chlordane	ND	1.0	0.12							
ha-Chlordane [2C]	ND	1.0	0.12							
a-BHC	ND	1.0	0.06							
a-BHC [2C]	ND	1.0	0.06							
ordane	ND	8.5	1.1							
ordane [2C]	ND	8.5	1.1							
ta-BHC	ND	1.0	0.12							
ta-BHC [2C]	ND	1.0	0.12							
eldrin	ND	2.0	0.26							
eldrin [2C]	ND	2.0	0.26							
dosulfan I	ND	1.0	0.10							
dosulfan I [2C]	ND	1.0	0.10							
dosulfan II	ND	2.0	0.15							
dosulfan II [2C]	ND	2.0	0.15							
dosulfan sulfate	ND	2.0	0.16							
dosulfan Sulfate [2C]	ND	2.0	0.16							
drin	ND	2.0	0.14							
drin [2C]	ND	2.0	0.14							
drin aldehyde	ND	2.0	0.31							
drin aldehyde [2C]	ND	2.0	0.31							
drin ketone	ND	2.0	0.13							
drin ketone [2C]	ND	2.0	0.13							
nma-BHC	ND	1.0	0.10							
nma-BHC [2C]	ND	1.0	0.10							
nma-Chlordane	ND	1.0	0.89							
nma-Chlordane [2C]	ND	1.0	0.89							
otachlor	ND	1.0	0.12							
otachlor [2C]	ND	1.0	0.12							
ptachlor epoxide	ND	1.0	0.09							

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 01/02/2019

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Dotah DOAGGIO CCCEMU DC	D/DECT C (ntinucd)								
Batch B9A0010 - GCSEMI_PCI		ntinuea)								
Blank (B9A0010-BLK1) - Continue	ed				Prepare	d: 12/31/2018	Analyzed: 1/2/	/2019		
Heptachlor epoxide [2C]	ND	1.0	0.09							
Methoxychlor	ND	5.0	0.18							
Methoxychlor [2C]	ND	5.0	0.18							
Гохарhene	ND	50	4.7							
Toxaphene [2C]	ND	50	4.7							
Surrogate: Decachlorobiphenyl	10.84			16.6667		65.0	43 - 84			
Surrogate: Decachlorobiphenyl [10.62			16.6667		63.7	43 - 84			
Surrogate: Tetrachloro-m-xylene	11.28			16.6667		67.7	54 - 118			
Surrogate: Tetrachloro-m-xylene	11.94			16.6667		71.6	54 - 118			
LCS (B9A0010-BS1)					Prepare	d: 12/31/2018	Analyzed: 1/2/	/2019		
.,4′-DDD	16.1442	2.0	0.07	16.6667		96.9	73 - 110			
I,4′-DDD [2C]	14.6753	2.0	0.07	16.6667		88.1	73 - 110			
,4′-DDE	15.5615	2.0	0.11	16.6667		93.4	71 - 99			
,4′-DDE [2C]	15.1607	2.0	0.11	16.6667		91.0	71 - 99			
,4′-DDT	12.9487	2.0	0.10	16.6667		77.7	51 - 106			
,4'-DDT [2C]	15.0292	2.0	0.10	16.6667		90.2	51 - 106			
Aldrin	13.0577	1.0	0.12	16.6667		78.3	67 - 95			
Aldrin [2C]	14.4683	1.0	0.12	16.6667		86.8	67 - 95			
lpha-BHC	13.3020	1.0	0.11	16.6667		79.8	67 - 94			
llpha-BHC [2C]	14.1887	1.0	0.11	16.6667		85.1	67 - 94			
lpha-Chlordane	15.3170	1.0	0.12	16.6667		91.9	69 - 99			
lpha-Chlordane [2C]	15.0642	1.0	0.12	16.6667		90.4	69 - 99			
peta-BHC	14.4295	1.0	0.06	16.6667		86.6	67 - 99			
eta-BHC [2C]	14.6652	1.0	0.06	16.6667		88.0	67 - 99			
lelta-BHC	15.1262	1.0	0.12	16.6667		90.8	73 - 103			
elta-BHC [2C]	15.0205	1.0	0.12	16.6667		90.1	73 - 103			
Dieldrin	13.8225	2.0	0.26	16.6667		82.9	65 - 93			
Dieldrin [2C]	13.2813	2.0	0.26	16.6667		79.7	65 - 93			
Endosulfan I	14.3960	1.0	0.10	16.6667		86.4	65 - 91			
Endosulfan I [2C]	13.8900	1.0	0.10	16.6667		83.3	65 - 91			
Endosulfan II	15.7413	2.0	0.15	16.6667		94.4	65 - 102			
Endosulfan II [2C]	15.5233	2.0	0.15	16.6667		93.1	65 - 102			
Endosulfan sulfate	14.7380	2.0	0.16	16.6667		88.4	64 - 106			
Endosulfan Sulfate [2C]	14.4813	2.0	0.16	16.6667		86.9	64 - 106			
Endrin	15.7947	2.0	0.14	16.6667		94.8	64 - 111			
Endrin [2C]	14.7912	2.0	0.14	16.6667		88.7	64 - 111			
Endrin aldehyde	15.4152	2.0	0.31	16.6667		92.5	64 - 109			
ndrin aldehyde [2C]	11.4538	2.0	0.31	16.6667		68.7	64 - 109			
ndrin ketone	14.7732	2.0	0.13	16.6667		88.6	57 - 101			
ndrin ketone [2C]	14.2802	2.0	0.13	16.6667		85.7	57 - 101			

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 01/02/2019

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Datah DOAGGIO CCCEMU DCI	D/DECT C (entinued)								
Batch B9A0010 - GCSEMI_PCI	D/PESI_S (CO	ontinuea)			_					
LCS (B9A0010-BS1) - Continued					Prepared		Analyzed: 1/2/	2019		
gamma-BHC	13.9995	1.0	0.10	16.6667		84.0	65 - 96			
gamma-BHC [2C]	14.0143	1.0	0.10	16.6667		84.1	65 - 96			
gamma-Chlordane	15.6818	1.0	0.89	16.6667		94.1	65 - 113			
gamma-Chlordane [2C]	14.9582	1.0	0.89	16.6667		89.7	65 - 113			
Heptachlor	14.9030	1.0	0.12	16.6667		89.4	61 - 96			
Heptachlor [2C]	14.6573	1.0	0.12	16.6667		87.9	61 - 96			
Heptachlor epoxide	13.8850	1.0	0.09	16.6667		83.3	64 - 89			
Heptachlor epoxide [2C]	13.9490	1.0	0.09	16.6667		83.7	64 - 89			
Methoxychlor	16.7568	5.0	0.18	16.6667		101	67 - 109			
Methoxychlor [2C]	13.5067	5.0	0.18	16.6667		81.0	67 - 109			
Surrogate: Decachlorobiphenyl	12.99			16.6667		78.0	43 - 84			
Surrogate: Decachlorobiphenyl [12.01			16.6667		72.0	43 - 84			
Surrogate: Tetrachloro-m-xylene	13.45			16.6667		80.7	54 - 118			
Surrogate: Tetrachloro-m-xylene	12.97			16.6667		77.8	54 - 118			
Duplicate (B9A0010-DUP1)		S	ource: 18049	012-06	Prepared	d: 12/31/2018	Analyzed: 1/2/	2019		
,4′-DDD	ND	10	0.35		ND				20	
,4′-DDD [2C]	ND	10	0.35		ND				20	
,4′-DDE	ND	10	0.54		ND				20	
,4′-DDE [2C]	ND	10	0.54		ND				20	
,4′-DDT	ND	10	0.50		ND				20	
4,4'-DDT [2C]	ND	10	0.50		ND				20	
Aldrin	ND	5.0	0.62		ND				20	
Aldrin [2C]	ND	5.0	0.62		ND				20	
lpha-BHC	ND	5.0	0.53		ND				20	
lpha-BHC [2C]	ND	5.0	0.53		ND				20	
lpha-Chlordane	44.7583	5.0	0.59		62.9025			33.7	20	R3
alpha-Chlordane [2C]	77.1783	5.0	0.59		107.352			32.7	20	R3
peta-BHC	ND	5.0	0.30		ND				20	
peta-BHC [2C]	ND	5.0	0.30		ND				20	
delta-BHC	ND	5.0	0.62		ND				20	
lelta-BHC [2C]	ND	5.0	0.62		ND				20	
Dieldrin	8.79917	10	1.3		12.3167			33.3	20	R3, J
Dieldrin [2C]	9.08167	10	1.3		12.2292			29.5	20	R3, J
Endosulfan I	ND	5.0	0.50		ND				20	
Endosulfan I [2C]	ND	5.0	0.50		ND				20	
Endosulfan II	ND	10	0.77		ND				20	
Endosulfan II [2C]	ND	10	0.77		ND				20	
Endosulfan sulfate	ND	10	0.80		ND				20	
Endosulfan Sulfate [2C]	ND	10	0.80		ND				20	
Endrin	ND	10	0.68		ND				20	

Endosulfan I [2C]

9.50667

5.0

Certificate of Analysis

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency Irvine , CA 92614 Reported: 01/02/2019

Organochlorine Pesticides by EPA 8081 - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD		
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes	
Batch B9A0010 - GCSEMI_PC	B/PEST_S (co	ntinued)									
Duplicate (B9A0010-DUP1) - Cont	inued	Se	ource: 18049	012-06	Prepared	d: 12/31/2018 Analyzed: 1/2/2019					
Endrin [2C]	ND	10	0.68		ND				20		
Endrin aldehyde	ND	10	1.6		ND				20		
Endrin aldehyde [2C]	ND	10	1.6		ND				20		
Endrin ketone	ND	10	0.63		ND				20		
Endrin ketone [2C]	ND	10	0.63		ND				20		
gamma-BHC	ND	5.0	0.52		ND				20		
amma-BHC [2C]	ND	5.0	0.52		ND				20		
amma-Chlordane	27.6117	5.0	4.4		39.4708			35.4	20	R3	
gamma-Chlordane [2C]	28.8642	5.0	4.4		40.2867			33.0	20	R3	
Ieptachlor	ND	5.0	0.59		ND				20		
Heptachlor [2C]	ND	5.0	0.59		ND				20		
Heptachlor epoxide	ND	5.0	0.44		ND				20		
Heptachlor epoxide [2C]	ND	5.0	0.44		ND				20		
Methoxychlor	ND	25	0.89		ND				20		
Methoxychlor [2C]	ND	25	0.89		ND				20		
Surrogate: Decachlorobiphenyl	5.435			16.6667		32.6	43 - 84			S10	
Surrogate: Decachlorobiphenyl [7.524			16.6667		45.1	43 - 84				
Surrogate: Tetrachloro-m-xylene	9.485			16.6667		56.9	54 - 118				
Surrogate: Tetrachloro-m-xylene	6.838			16.6667		41.0	54 - 118			S10	
Matrix Spike (B9A0010-MS1)		Source: 1804912-06			Prepared: 12/31/2018 Analyzed: 1/2/2019						
.,4′-DDD	9.86500	10	0.35	16.6667	ND	59.2	73 - 110			J, M2	
,4'-DDD [2C]	8.15000	10	0.35	16.6667	ND	48.9	73 - 110			J, M2	
,4′-DDE	10.6550	10	0.54	16.6667	ND	63.9	71 - 99			M2	
,4'-DDE [2C]	10.1000	10	0.54	16.6667	ND	60.6	71 - 99			M2	
,4′-DDT	8.47333	10	0.50	16.6667	ND	50.8	51 - 106			J, M2	
,4′-DDT [2C]	10.2058	10	0.50	16.6667	ND	61.2	51 - 106			•	
Aldrin	9.98417	5.0	0.62	16.6667	ND	59.9	67 - 95			M2	
Aldrin [2C]	10.5917	5.0	0.62	16.6667	ND	63.6	67 - 95			M2	
lpha-BHC	9.67833	5.0	0.53	16.6667	ND	58.1	67 - 94			M2	
lpha-BHC [2C]	9.92000	5.0	0.53	16.6667	ND	59.5	67 - 94			M2	
lpha-Chlordane	62.5475	5.0	0.59	16.6667	62.9025	-2.13	69 - 99			M2	
lpha-Chlordane [2C]	113.581	5.0	0.59	16.6667	107.352	37.4	69 - 99			M2	
eta-BHC	9.25417	5.0	0.30	16.6667	ND	55.5	67 - 99			M2	
eta-BHC [2C]	9.87750	5.0	0.30	16.6667	ND	59.3	67 - 99			M2	
elta-BHC	7.42167	5.0	0.62	16.6667	ND	44.5	73 - 103			M2	
elta-BHC [2C]	7.00500	5.0	0.62	16.6667	ND	42.0	73 - 103			M2	
Dieldrin	20.7458	10	1.3	16.6667	12.3167	50.6	65 - 93			M2	
Dieldrin [2C]	23.4625	10	1.3	16.6667	12.2292	67.4	65 - 93			•	
Indosulfan I	10.3767	5.0	0.50	16.6667	ND	62.3	65 - 91			M2	
					- 125						

M2

16.6667

ND

57.0

65 - 91

0.50

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To : Ross Surrency Irvine , CA 92614 Reported : 01/02/2019

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B9A0010 - GCSEMI_PC	B/PEST S (co	ontinued)								
Matrix Spike (B9A0010-MS1) - Co			ource: 18049	012-06	Prepared	: 12/31/2018	Analyzed: 1/2/	2019		
Endosulfan II	4.78750	10	0.77	16.6667	ND	28.7	65 - 102			J, M2
Endosulfan II [2C]	5.60500	10	0.77	16.6667	ND	33.6	65 - 102			J, M2
Endosulfan sulfate	2.87500	10	0.80	16.6667	ND	17.2	64 - 106			J, M2
Endosulfan Sulfate [2C]	7.65083	10	0.80	16.6667	ND	45.9	64 - 106			J, M2
Endrin	9.51917	10	0.68	16.6667	ND	57.1	64 - 111			J, M2
Endrin [2C]	9.59500	10	0.68	16.6667	ND	57.6	64 - 111			J, M2
Endrin aldehyde	3.74000	10	1.6	16.6667	ND	22.4	64 - 109			J, M2
Endrin aldehyde [2C]	5.11167	10	1.6	16.6667	ND	30.7	64 - 109			J, M2
Endrin ketone	2.81667	10	0.63	16.6667	ND	16.9	57 - 101			J, M2
Endrin ketone [2C]	2.37500	10	0.63	16.6667	ND	14.2	57 - 101			J, M2
gamma-BHC	9.55250	5.0	0.52	16.6667	ND	57.3	65 - 96			M2
gamma-BHC [2C]	9.93167	5.0	0.52	16.6667	ND	59.6	65 - 96			M2
gamma-Chlordane	37.1142	5.0	4.4	16.6667	39.4708	-14.1	65 - 113			M2
gamma-Chlordane [2C]	43.9850	5.0	4.4	16.6667	40.2867	22.2	65 - 113			M2
Heptachlor	10.0500	5.0	0.59	16.6667	ND	60.3	61 - 96			M2
Heptachlor [2C]	9.57917	5.0	0.59	16.6667	ND	57.5	61 - 96			M2
Heptachlor epoxide	18.8633	5.0	0.44	16.6667	ND	113	64 - 89			M2
Heptachlor epoxide [2C]	20.1992	5.0	0.44	16.6667	ND	121	64 - 89			M2
Methoxychlor	4.80083	25	0.89	16.6667	ND	28.8	67 - 109			J, M2
Methoxychlor [2C]	6.43500	25	0.89	16.6667	ND	38.6	67 - 109			M2, J
Surrogate: Decachlorobiphenyl	8.945			16.6667		53.7	43 - 84			
Surrogate: Decachlorobiphenyl [10.05			16.6667		60.3	43 - 84			
Surrogate: Tetrachloro-m-xylene	9.450			16.6667		56.7	54 - 118			
Surrogate: Tetrachloro-m-xylene	9.626			16.6667		57.8	54 - 118			
Matrix Spike Dup (B9A0010-MSD	1)	So	ource: 18049	012-06	Prepared	: 12/31/2018	Analyzed: 1/2/	2019		
4,4′-DDD	10.6042	10	0.35	16.6667	ND	63.6	73 - 110	7.22	20	M2
4,4′-DDD [2C]	12.6192	10	0.35	16.6667	ND	75.7	73 - 110	43.0	20	R3
4,4′-DDE	10.9583	10	0.54	16.6667	ND	65.7	71 - 99	2.81	20	M2
1,4'-DDE [2C]	11.2108	10	0.54	16.6667	ND	67.3	71 - 99	10.4	20	M2
1,4'-DDT	8.36250	10	0.50	16.6667	ND	50.2	51 - 106	1.32	20	M2, J
4,4'-DDT [2C]	8.13417	10	0.50	16.6667	ND	48.8	51 - 106	22.6	20	M2, R3, J
Aldrin	11.1933	5.0	0.62	16.6667	ND	67.2	67 - 95	11.4	20	
Aldrin [2C]	10.4550	5.0	0.62	16.6667	ND	62.7	67 - 95	1.30	20	M2
lpha-BHC	9.49250	5.0	0.53	16.6667	ND	57.0	67 - 94	1.94	20	M2
lpha-BHC [2C]	9.59000	5.0	0.53	16.6667	ND	57.5	67 - 94	3.38	20	M2
llpha-Chlordane	62.3550	5.0	0.59	16.6667	62.9025	-3.29	69 - 99	0.308	20	M2
lpha-Chlordane [2C]	103.924	5.0	0.59	16.6667	107.352	-20.6	69 - 99	8.88	20	M2
peta-BHC	9.33167	5.0	0.30	16.6667	ND	56.0	67 - 99	0.834	20	M2
beta-BHC [2C]	9.64333	5.0	0.30	16.6667	ND	57.9	67 - 99	2.40	20	M2
delta-BHC	7.41583	5.0	0.62	16.6667	ND	44.5	73 - 103	0.0786	20	M2

Project Number: LAUSD- Colfax ES, 11640.008 Leighton Consulting, Inc.

17781 Cowan Street Report To: Ross Surrency Irvine, CA 92614 Reported: 01/02/2019

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B9A0010 - GCSEMI_PC	B/PEST_S (con	tinued)								
Matrix Spike Dup (B9A0010-MSD	1) - Continued	S	Source: 1804912-06			Prepared: 12/31/2018 Analyzed: 1/2/2019				
delta-BHC [2C]	7.18167	5.0	0.62	16.6667	ND	43.1	73 - 103	2.49	20	M2
Dieldrin	20.8925	10	1.3	16.6667	12.3167	51.5	65 - 93	0.704	20	M2
Dieldrin [2C]	21.6500	10	1.3	16.6667	12.2292	56.5	65 - 93	8.04	20	M2
Endosulfan I	9.56500	5.0	0.50	16.6667	ND	57.4	65 - 91	8.14	20	M2
Endosulfan I [2C]	9.90417	5.0	0.50	16.6667	ND	59.4	65 - 91	4.10	20	M2
Endosulfan II	5.06583	10	0.77	16.6667	ND	30.4	65 - 102	5.65	20	M2, J
Endosulfan II [2C]	3.36417	10	0.77	16.6667	ND	20.2	65 - 102	50.0	20	M2, R3, J
Endosulfan sulfate	3.94000	10	0.80	16.6667	ND	23.6	64 - 106	31.3	20	M2, R3, J
Endosulfan Sulfate [2C]	3.38083	10	0.80	16.6667	ND	20.3	64 - 106	77.4	20	M2, R3, J
Endrin	10.4892	10	0.68	16.6667	ND	62.9	64 - 111	9.70	20	M2
Endrin [2C]	10.3983	10	0.68	16.6667	ND	62.4	64 - 111	8.04	20	M2
Endrin aldehyde	3.79083	10	1.6	16.6667	ND	22.7	64 - 109	1.35	20	M2, J
Endrin aldehyde [2C]	2.94667	10	1.6	16.6667	ND	17.7	64 - 109	53.7	20	M2, R3, J
Endrin ketone	3.29500	10	0.63	16.6667	ND	19.8	57 - 101	15.7	20	M2, J
Endrin ketone [2C]	3.39000	10	0.63	16.6667	ND	20.3	57 - 101	35.2	20	M2, R3, J
gamma-BHC	9.49417	5.0	0.52	16.6667	ND	57.0	65 - 96	0.613	20	M2
gamma-BHC [2C]	9.60250	5.0	0.52	16.6667	ND	57.6	65 - 96	3.37	20	M2
gamma-Chlordane	36.5392	5.0	4.4	16.6667	39.4708	-17.6	65 - 113	1.56	20	M2
gamma-Chlordane [2C]	40.2750	5.0	4.4	16.6667	40.2867	-0.0700	65 - 113	8.81	20	M2
Heptachlor	10.0417	5.0	0.59	16.6667	ND	60.3	61 - 96	0.0829	20	M2
Heptachlor [2C]	9.17250	5.0	0.59	16.6667	ND	55.0	61 - 96	4.34	20	M2
Heptachlor epoxide	17.4133	5.0	0.44	16.6667	ND	104	64 - 89	7.99	20	M2
Heptachlor epoxide [2C]	18.1917	5.0	0.44	16.6667	ND	109	64 - 89	10.5	20	M2
Methoxychlor	8.34250	25	0.89	16.6667	ND	50.1	67 - 109	53.9	20	M2, R3, J
Methoxychlor [2C]	5.92167	25	0.89	16.6667	ND	35.5	67 - 109	8.31	20	M2, J
Surrogate: Decachlorobiphenyl	10.91			16.6667		65.4	43 - 84			
Surrogate: Decachlorobiphenyl [10.52			16.6667		63.1	43 - 84			
Surrogate: Tetrachloro-m-xylene	9.168			16.6667		55.0	54 - 118			

Surrogate: Decachlorobiphenyl	10.91	16.6667	65.4	43 - 84
Surrogate: Decachlorobiphenyl [10.52	16.6667	63.1	43 - 84
Surrogate: Tetrachloro-m-xylene	9.168	16.6667	55.0	54 - 118
Surrogate: Tetrachloro-m-xylene	9.130	16.6667	54.8	54 - 118

Leighton Consulting, Inc. Project Number: LAUSD- Colfax ES, 11640.008

17781 Cowan Street Report To: Ross Surrency
Irvine, CA 92614 Reported: 01/02/2019

Notes and Definitions

S10	Surrogate recovery was outside of laborator	y acceptance limit due to	possible matrix interference.

R3 RPD value outside acceptance criteria. Calculation is based on raw values. The analytical batch was validated by the Laboratory Control

Sample (LCS).

M2 Matrix spike recovery outside of acceptance limit due to possible matrix interference. The analytical batch was validated by the laboratory

control sample.

J Analyte detected below the Practical Quantitation Limit but above or equal to the Method Detection Limit. Result is an estimated

concentration.

ND Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL,

analyte is not detected at or above the Method Detection Limit (MDL)

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)

OR1 OR-NELAP (OSPHL)

Notes:

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
- (3) Results are wet unless otherwise specified.

Dominic Mata

From:

Ross Surrency <rsurrency@leightongroup.com>

Sent:

Thursday, December 27, 2018 4:02 PM

To:

Dominic Mata

Subject:

RE: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804912)

Dominic,

Thanks for this report. Please analyze sample PER1-SW2-1.0 that is on hold. Analyze for OCPs by 8081.

Ross Surrency, PG Associate Geologist

Leighton Consulting, Inc

17781 Cowan, Irvine, CA 92614 (949) 681-4264 – Direct (949) 880-4439 – Cell

Geotechnical | Geoenvironmental | Materials Testing

SOLUTIONS YOU CAN BUILD ON

From: Dominic Mata [mailto:dominic@atlglobal.com]

Sent: Thursday, December 27, 2018 3:28 PM

To: Ross Surrency

Cc: Kevin Hall; customer.relations@atlglobal.com

Subject: Results - LAUSD-Colfax ES, 11640.008 (ATL# 1804912)

Good afternoon Ross,

Please find your results for the above project attached. If I can further assist, please let me know.

Thanks,

Dominic Mata | Project Coordinator ADVANCED TECHNOLOGY LABORATORIES 3275 Walnut Avenue, Signal Hill CA 90755 O: 562.989.4045 ext. 238 | http://www.atlglobal.com

Laboratory

Excellence

Defined

This message is intended for the use of the individual or entity to which it is addressed. This may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and delete the original message. Thank you.

APPENDIX E WASTE DISPOSAL DOCUMENTATION

NO. 747731

NON-HAZARDOUS WASTE DATA FORM

				300284					
	Generator's Name and Mailing Address		Generator's Site Address (if different than mailing address)					
	LAUSD, - OEHS		LAUSD - COLFA	X ELEMENTARY SCHOOL	DL.				
	ATTN: ANDREW MODUGNO		11724 ADDISON						
	333 S. BEAUDRY AVE., 21ST FLOOR		VALLEY VILLAGE, CA 91807						
	LOS ANGELES, CA 90017		ANTICY VILLAG	E. CA STOUT					
	Generator's Phone: 243-244-3150								
	Container type removed from site:		Container type trans	sported to receiving facility:					
				Φ	П				
i v	☐ Drums ☐ Vacuum Truck ☐ Roll-off Truck	☐ Dump Truck	☐ Drums X ☐ Vac	cuum Truck	☐ Dump Truck				
1									
	Other		Other						
l K	Quantity		Quantity	Volume					
15									
GENERATOR	WASTE DESCRIPTION NON-HAZARDOUS V	VATED	OFNEDATING DROCES	. WELL PURGING / DE	CON WATER				
一里									
一面	COMPONENTS OF WASTE F	PPM %	СОМРС	ONENTS OF WASTE	PPM %				
Q	1. WATER	99-100%	3.						
	2. TPH	<1%							
	2. TPH		4						
	Waste Profile	PROPERTIES: pH	7-10 SOLID XX L	IQUID SLUDGE SLURRY	OTHER				
	HANDLING INSTRUCTIONS:								
	Generator Printed/Typed Name	Signature	10		Month Day Year				
	Generator Printed/Typed Name	Signature	h-12		GE				
	January Bobynicsk		6-1B		Month Day Year				
	The Generator certifies that the waste as described is 100% non-hazardou		pB	Phon	GE				
	The Generator certifies that the waste as described is 100% non-hazardou Transporter 1 Company Name		pB	Phone#	GE				
- H	The Generator certifies that the waste as described is 100% non-hazardou Transporter 1 Company Name BELSHIRE	as	pB	Phone# 949-460-5200	11 23 18				
TER	The Generator certifies that the waste as described is 100% non-hazardou Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name	us Signature	pB	949-460-5200	Month Day Year				
	The Generator certifies that the waste as described is 100% non-hazardou Transporter 1 Company Name BELSHIRE	us Signature	pB 200 Vil	949-460-5200	Month Day Year				
	The Generator certifies that the waste as described is 100% non-hazardou Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCOS VIOS VIOS Transporter Acknowledgment of Receipt of Materials	us Signature	pB 200 Vil	949-460-5200	11 23 18				
	The Generator certifies that the waste as described is 100% non-hazardou Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS VIII Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name	us Signature	pB 200 Vil	949-460-5200 Phone#	Month Day Year				
	The Generator certifies that the waste as described is 100% non-hazardou. Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name NIETO & SONS TRUCKING, INC.	Signature	pB 200 Vil	949-460-5200	Month Day Year				
	The Generator certifies that the waste as described is 100% non-hazardou Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS VIII Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name	us Signature	pB 200 Vil	949-460-5200 Phone#	Month Day Year				
TRANSPORTER	The Generator certifies that the waste as described is 100% non-hazardou. Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name NIETO & SONS TRUCKING, INC.	Signature	pB 200 Vil	949-460-5200 Phone#	Month Day Year				
	The Generator certifies that the waste as described is 100% non-hazardou. Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials	Signature	pB 200 Vil	949-460-5200 Phone# 714-990-6855	Month Day Year				
TRANSPORT	The Generator certifies that the waste as described is 100% non-hazardou. Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name CALOS Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address	Signature	pB 2m Vil	949-460-5200 Phone# 714-990-6855 Phone#	Month Day Year				
TRANSPORT	The Generator certifies that the waste as described is 100% non-hazardou. Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON	Signature	pB 200 Vil	949-460-5200 Phone# 714-990-6855	Month Day Year				
TRANSPORT	Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COLOS VILLA Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST.	Signature	pB 200 Vil	949-460-5200 Phone# 714-990-6855 Phone#	Month Day Year				
TRANSPORT	The Generator certifies that the waste as described is 100% non-hazardou. Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON	Signature	pB 200 Vil	949-460-5200 Phone# 714-990-6855 Phone#	Month Day Year				
TRANSPORT	Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COLOS VILLA Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST.	Signature	PB 2m Vil	949-460-5200 Phone# 714-990-6855 Phone#	Month Day Year				
TRANSPORT	Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COLOS VILLA Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST.	Signature	PB Vil	949-460-5200 Phone# 714-990-6855 Phone#	Month Day Year				
TRANSPORT	The Generator certifies that the waste as described is 100% non-hazardout Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222	Signature Signature	pB 200 Vil	949-460-5200 Phone# 714-990-6855 Phone#	Month Day Year				
TRANSPORT	Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COLOS VILLA Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST.	Signature	pB 200 Vil	949-460-5200 Phone# 714-990-6855 Phone#	Month Day Year				
	The Generator certifies that the waste as described is 100% non-hazardout Transporter 1 Company Name BELSHIRE Transporter 1 Printed/Typed Name COCIOS Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222	Signature Signature	In Vil	949-460-5200 Phone# 714-990-6855 Phone#	Month Day Year				

APPENDIX F PROUCL OUTPUT SPREADSHEET

I I K	A		E	F	G	Н	1	J	К				
- 41	A B C	D U				Il Data Sets		3					
1													
3	User Selected Options												
4	Date/Time of Computation	ProUCL 5.11	1/19/2018	2:42:30 PM									
5	From File	Colfax Arseni	c Data.xls										
6	Full Precision	OFF											
7	Confidence Coefficient	95%											
8	Number of Bootstrap Operations	2000											
9													
10													
11	Arsenic Concentrations (mg/kg)												
12													
13				General S	Statistics								
14	Total I	Number of Obs	ervations	42			Number	of Distinct	Observations				
15							Number	of Missing	Observations				
16			Minimum	0.98					Mean				
17		ı	Maximum	13					Median				
18			SD	3.172				Std.	Error of Mean				
19		Coefficient of	Variation	0.596					Skewness	0.818			
20													
21				Normal G	iOF Test		Ob! 181	6U- 00E T					
22		apiro Wilk Tes		0.88		Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level							
23	5% Sh	apiro Wilk Criti		0.942		Data Not		5% Signili GOF Tes					
24		Lilliefors Tes		0.149		Data Nat			cance Level				
25	5%	6 Lilliefors Criti		0.135 Normal at 5	0/ Cignifica		NOITHAL AL	5 /6 Sigitiff	Carice Level				
26			Data NOT	vormai at 5	% Significa	liice Level							
27			Δες	uming Nom	nal Distribu	tion							
28	Q5% N/	ormal UCL	7,33	unning Norm	nai Distribu		ICI s (Adi	usted for S	Skewness)				
29	30 /0 140	95% Studer	nt's-t LICI	6.142	95% UCLs (Adjusted for Skewness) 2 95% Adjusted-CLT UCL (Chen-1995) 6.1								
30		50 % Oludei	101002	0.112	95% Modified-t UCL (Johnson-1978) 6								
31													
33				Gamma (GOF Test								
34		A-D Tes	t Statistic	0.188		Anders	on-Darling	g Gamma	GOF Test				
35		5% A-D Criti	cal Value	0.756	Detected	data appear	Gamma D	Distributed	at 5% Signific	ance Level			
36		K-S Tes	t Statistic	0.0717		Kolmogo	rov-Smirn	ov Gamma	a GOF Test				
37		5% K-S Criti	cal Value	0.137	Detected	data appear	Gamma D	Distributed	at 5% Signific	ance Level			
38	_	Detected dat	a appear	Gamma Dis	stributed at	5% Signific	ance Leve	el					
39													
40				Gamma	Statistics								
41		k l	nat (MLE)	2.808					orrected MLE				
42			nat (MLE)	1.894			Theta		orrected MLE				
43			nat (MLE)	235.9					oias corrected				
44	ML	E Mean (bias o	corrected)	5.319			•		oias corrected				
45				0.0445		Ap	•		re Value (0.05				
46	Adjus	ted Level of Sig	niticance	0.0443			A	ajusted Ch	i Square Value	100.9			
47			۸ ــ ــ	umina Ca-	ma Distrit	ution							
48	050/ 1	LICI /upa ····b·		uming Gam	iiia Distrib		stad Gamr	ma LICL (m	se when n<50	6.304			
49	95% Approximate Gamma	OCL (use whe	#II II >=5U)	6.267		55% Auju	sieu Gaiill	na oor (u	SS WHEN IISSU	0.504			
50				Lognorma	GOF Test								
51	0	napiro Wilk Tes	t Statistic	0.924	GOF 1881		iro Wilk La	ognormal C	OF Test				
52	Si	napilo vviik Tes	ระ อเฮแอแต	V.524			TTIIK EC	-gviillai (

1	Α	В	С	D	E	- F	G	H -	1,	J	К	L			
53			5% Sha	apiro Wilk C	ritical Value	0.942				t 5% Signific					
54				Lilliefors T	est Statistic	0.0872		Lilli	iefors Logno	ormal GOF	Test				
55			5%		ritical Value	0.135	Data appear Lognormal at 5% Significance Level								
56				Data ap	pear Approx	imate Logn	ormal at	5% Significan	ce Level						
57															
58						Lognormal	Statistic	S							
59					ogged Data	-0.0202					logged Data	1.483			
60			Maximum of Logged Data 2.565 SD of logged							logged Data	0.651				
61															
62						ming Logno	rmal Dist	ribution							
63					95% H-UCL	6.685					MVUE) UCL				
64				· · ·	MVUE) UCL	7.972			97.5% C	hebyshev (I	MVUE) UCL	9.08			
65			99% C	hebyshev (I	MVUE) UCL	11.26									
66															
67					•			UCL Statistic							
68			D	ata appear	to follow a D	iscernible [Distributio	n at 5% Sign	ificance Le	vel					
69															
70						ametric Dist	ribution F	ree UCLS		050/ 10	aldenifa LICI	6.142			
71			0.004.00		% CLT UCL	6.124					ckknife UCL tstrap-t UCL				
72					otstrap UCL	6.094			05% D		otstrap UCL				
73					otstrap UCL	6.193			95% P	ercentile bo	otstrap occ	0.111			
74					otstrap UCL	6.16			OE9/ Ch	huchou/Mo	an, Sd) UCL	7.452			
75					an, Sd) UCL	6.787				•	an, Sd) UCL an, Sd) UCL				
76			97.5% Cne	bysnev(ivie	an, Sd) UCL	8.375			99% CH	enysilev(ivie	an, 30) 00L	10.13			
77						Suggested	LICL to LI	60							
78			059/	Adjusted C	amma UCL	6.304	OCL IO O	5 C							
79			9570	Adjusted C	adililia UCL	0.304									
80	Noto	Suggestion	ne regarding	the selection	on of a 95%	LICL are pro	ovided to	help the user	to select the	e most appro	opriate 95%	UCL.			
81	NOIE.	. Suggestio						ta distribution			-p.1.0.10 00 70				
82	Tho	sa racomm						udies summa			and Lee (20	006).			
83								litional insight							
84	HOWEV	or, annuidu	ono resulta V	THE HOLLOVE	. all real VVC	And data set	., ioi add		4001 111						
85															